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In this handout we give a proof of the central limit theorem, which we have already discussed.

Consider a random variable with a probability distribution P (x). The mean, µ, and variance,

σ2, are given by

µ ≡ 〈x〉 =

∫ ∞

−∞
x P (x) dx

σ2 ≡ 〈x2〉 − 〈x〉2 .

The standard deviation is just the square root of the variance, i.e. σ. In this handout we consider

distributions that fall off sufficiently fast at ∞ that the mean and variance are finite. This excludes,

for example, the Lorentzian distribution:

PLor =
1

π

1

1 + x2
. (1)

A common distribution which does have a finite mean and variance is the Gaussian distribution

PGauss =
1√
2π σ

exp

[

−(x − µ)2

2σ2

]

. (2)

We have studied Gaussian integrals before and so you should be able to show that the distribution

is normalized and that the mean and standard deviation are µ and σ respectively.

Consider a distribution, not necessarily Gaussian, with a finite mean and distribution. An

example would be the rectangular distribution

Prect(x) =







1

2
√

3
, (|x| <

√
3) ,

0, (|x| >
√

3) ,
(3)

where the parameters have been chosen so that µ = 0, σ = 1. We pick N random numbers xi from

such a distribution and form the sum

X =
N

∑

i=1

xi.

We are interested to determine the distribution of X, which we call PN (X). For example, if

N = 2, we know that if the sum is X then x2 must equal X − x1. Hence the distribution of X is



2

the product P (x1)P (X − x1) integrated over x1, i.e.

P2(X) =

∫ ∞

−∞
P (x1)P (X − x1) dx1 . (4)

You will recognize this as a convolution and recall that the Fourier transform of a convolution is

the product of the Fourier transforms of the individual functions. Hence, if Q(k) is the Fourier

transform of P (x) (in the context of statistics the Fourier transform of a distribution is called its

characteristic function), and QN (k) is the the Fourier transform of PN (X), we have

Q2(k) = Q(k)2 , (5)

where

Q(k) =

∫ ∞

−∞
P (x)eikx dx , Q2(k) =

∫ ∞

−∞
P2(X)eikx dx .

Expanding out the exponential we can write Q(k) in terms of the moments of P (x)

Q(k) = 1 + ik〈x〉 +
(ik)2

2!
〈x2〉 +

(ik)3

3!
〈x3〉 + · · · .

It will be convenient in what follows to write Q(k) as an exponential, i.e.

Q(k) = exp

[

ln

(

1 + ik〈x〉 +
(ik)2

2!
〈x2〉 +

(ik)3

3!
〈x3〉 + · · ·

)]

= exp

[

ikµ − k2σ2

2
+ c3(ik)3 + c4(ik)4 + · · ·

]

, (6)

where c3 involves third and lower moments, c4 involves fourth and lower moments, and so on.

We illustrate this for the special case of a Gaussian. As discussed before, the Fourier transform of

a Gaussian is also a Gaussian, a result which was obtained by “completing the square”. Completing

the square on Eq. (2) gives

QGauss(k) = exp

[

ikµ − k2σ2

2

]

, (7)

showing that the higher order coefficients, c3, c4, etc. in Eq. (6) all vanish for a Gaussian.

Consider now the case N > 2. If the sum of the xi is X we can choose the first N − 1 as we

wish but then xN must equal X − ∑N−1

i=1
xi. Hence Eq. (4) is generalized to

PN (X) =

∫ ∞

−∞
P (x1)dx1

∫ ∞

−∞
P (x2)dx2 · · ·

∫ ∞

−∞
P (xN−1)dxN−1 P [X − (x1 + x2 + · · · + xN−1)] .

This is a also known as a convolution, generalized to the case of N variables. It can easily be

shown, using the methods discussed in class which led to Eq. (5), that the the Fourier transform
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of this generalized convolution is again the product of the Fourier transforms of the individual

functions. This means that

QN (k) = Q(k)N = exp

[

ikNµ − Nk2σ2

2
+ Nc3(ik)3 + Nc4(ik)4 + · · ·

]

.

Comparing with Eq. (6) we see that

the mean of the distribution of the sum of N variables (the coefficient of −ik in the

exponential is N times the mean of the distribution of one variable, and the variance

of the distribution of the sum of N variables (the coefficient of −k2/2) is N times the

variance of the distribution of one variable.

These are general statements applicable for any N .

However, if N is large a great simplification can be made. The distribution of X, which is the

inverse transform of QN (k), is given by

PN (X) =
1

2π

∫ ∞

−∞
Q(k)N e−ikX dk

=
1

2π

∫ ∞

−∞
exp

[

−ikX ′ − Nk2σ2

2
+ Nc3(ik)3 + Nc4(ik)4 + · · ·

]

dk , (8)

where

X ′ = X − Nµ . (9)

Looking at the −Nk2/2 term in the exponential in Eq. (8), we see that the integrand is significant

for k < k⋆, where Nσ2(k⋆)2 = 1, and negligibly small for k ≫ k⋆. However, for 0 < k < k⋆

the higher order terms in Eq. (8), (i.e. those of order k3, k4 etc.) are very small since N(k⋆)3 ∼
N−1/2, N(k⋆)4 ∼ N−1 and so on. Hence the terms of higher order than k2 in Eq. (8), do not

contribute for large N and so

lim
N→∞

PN (X) =
1

2π

∫ ∞

−∞
exp

[

−ikX ′ − Nk2σ2

2

]

dk . (10)

In other words, for large N the distribution is the Fourier transform of a Gaussian, which, as we

know, is also a Gaussian. Completing the square in Eq. (10) gives

lim
N→∞

PN (X) =
1

2π

∫ ∞

−∞
exp

[

−Nσ2

2

(

k − iX ′

Nσ2

)2
]

dk exp

[

− (X ′)2

2Nσ2

]

=
1√

2πN σ
exp

[

−(X − Nµ)2

2Nσ2

]

, (11)

where, in the last line, we used Eq. (9). This is a Gaussian with mean Nµ and variance Nσ2.

Eq. (11) is the central limit theorem in statistics. It tells us that,
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for N → ∞, the distribution of the sum of N variables is a Gaussian of mean N times

the mean, µ, of the distribution of one variable, and variance N times the variance of

the distribution of one variable, σ2, independent of the form of the distribution of one

variable, P (x), provided only that µ and σ are finite.

The central limit theorem is of such generality that it is extremely important. It is the reason

why the Gaussian distribution has such a preeminent place in the theory of statistics.


