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Proof of the central limit theorem in statistics.
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In this handout we give a proof of the central limit theorem, which we have already discussed.
Consider a random variable with a probability distribution P(z). The mean, u, and variance,

o2, are given by

§= <x>:/ooxP(m)dx
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o° = (z%) — (z)~.
The standard deviation is just the square root of the variance, i.e. o. In this handout we consider

distributions that fall off sufficiently fast at oo that the mean and variance are finite. This ezcludes,

for example, the Lorentzian distribution:
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A common distribution which does have a finite mean and variance is the Gaussian distribution

Lot

PGanss = m exp 252

We have studied Gaussian integrals before and so you should be able to show that the distribution

(2)

is normalized and that the mean and standard deviation are p and o respectively.
Consider a distribution, not necessarily Gaussian, with a finite mean and distribution. An

example would be the rectangular distribution

e (2] < V).

Prect(z) =
) 0, (lz|>v3),

3)

where the parameters have been chosen so that u = 0,0 = 1. We pick N random numbers z; from
such a distribution and form the sum
X = Z ZT;.
i=1
We are interested to determine the distribution of X, which we call Py(X). For example, if

N = 2, we know that if the sum is X then x9 must equal X — z1. Hence the distribution of X is



the product P(z1)P(X — x1) integrated over z1, i.e.
00
P(X) = /_OO P(z1)P(X — x1) dx; . (4)
You will recognize this as a convolution and recall that the Fourier transform of a convolution is
the product of the Fourier transforms of the individual functions. Hence, if Q(k) is the Fourier
transform of P(z) (in the context of statistics the Fourier transform of a distribution is called its

characteristic function), and Qu (k) is the the Fourier transform of Py (X)), we have

Q2(k) = Q(k)?, (5)

where

Q(k) = / h Px)e*®dr,  Qu(k) = / h Py(X)e*® dz .
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Expanding out the exponential we can write Q(k) in terms of the moments of P(z)

ik)? ik)?
Q(k) =1+ ik(x) +(§!)<.%'2> —1—(?]::!)(1:3) +oee

It will be convenient in what follows to write Q(k) as an exponential, i.e.

Q) = exp [m <1+ik:<:v> LR ey R, +>}

k202
= |exp [iku 5 + Cg(ik’)3 + c4(ik)4 4+ .. :| , (6)

where c3 involves third and lower moments, ¢4 involves fourth and lower moments, and so on.
We illustrate this for the special case of a Gaussian. As discussed before, the Fourier transform of
a Gaussian is also a Gaussian, a result which was obtained by “completing the square”. Completing

the square on Eq. (2) gives

(7)
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QGauss(k) = exp |:Zkluf -

showing that the higher order coefficients, cs, ¢4, etc. in Eq. (6) all vanish for a Gaussian.
Consider now the case N > 2. If the sum of the z; is X we can choose the first N — 1 as we

wish but then xy must equal X — Zfi _11 x;. Hence Eq. (4) is generalized to

PN(X) :/ P(:cl)dscl / P(l‘g)dl‘g / P(x]v_l)dx]v_l P[X— (ac1+:c2+---+a:N_1)].
This is a also known as a convolution, generalized to the case of N variables. It can easily be

shown, using the methods discussed in class which led to Eq. (5), that the the Fourier transform



of this generalized convolution is again the product of the Fourier transforms of the individual

functions. This means that

Nk20?

Qn(k) = Q(k)N = exp |ikNp — + Nes(ik)® 4+ Neg(ik)r + - - -

Comparing with Eq. (6) we see that

the mean of the distribution of the sum of N variables (the coefficient of —ik in the
exponential is N times the mean of the distribution of one variable, and the variance
of the distribution of the sum of N variables (the coefficient of —k?/2) is N times the

variance of the distribution of one variable.

These are general statements applicable for any N.
However, if N is large a great simplification can be made. The distribution of X, which is the

inverse transform of Qx(k), is given by

Py(X) = ;ﬁ/oo Q(k)N e~ X dk

1 [e%e) Nk2 2 .
= 2/ exp [—z’kX’— 20 + Nes(ik)® + Neg(ik) + - | dk, (8)
™ —00
where
X'=X-—-Nu. (9)

Looking at the —Nk?/2 term in the exponential in Eq. (8), we see that the integrand is significant
for k < k*, where No?(k*)? = 1, and negligibly small for k& > k*. However, for 0 < k < k*
the higher order terms in Eq. (8), (i.e. those of order k3, k* etc.) are very small since N(k*)? ~
N=1/2 N(k*)* ~ N~ and so on. Hence the terms of higher order than k% in Eq. (8), do not

contribute for large N and so

N—oo 2
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lim Py(X) = 2/ exp [—ikX’ - 7 ] dk . (10)
s

In other words, for large N the distribution is the Fourier transform of a Gaussian, which, as we

know, is also a Gaussian. Completing the square in Eq. (10) gives

, 1 [ No? iX\? (X')?
ym P (X) = %/_mexp [‘2 <k_NaQ> ] dk exp [—maz}
1 (X — Np)?
T P T o e |
V2nN o 2No

where, in the last line, we used Eq. (9). This is a Gaussian with mean Ny and variance No?.

(11)

Eq. (11) is the | central limit theorem | in statistics. It tells us that,




for N — oo, the distribution of the sum of NV variables is a Gaussian of mean N times
the mean, pu, of the distribution of one variable, and variance N times the variance of
the distribution of one variable, o2, independent of the form of the distribution of one

variable, P(z), provided only that u and o are finite.

The central limit theorem is of such generality that it is extremely important. It is the reason

why the Gaussian distribution has such a preeminent place in the theory of statistics.



