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A summary of some important, and often poorly understood, results

concerning the mean of the distribution, µ, the mean of of a sample of N data

points, x, the standard deviation of the distribution, σ, the standard deviation

of the data points, s, and the error bar on the mean, σx.
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Suppose we have a set of experimental data, xi, (1 = 1, · · · , N), which has some random noise.

We shall often refer to this as a sample of data. The values of the xi are governed by a distribution

P (x), which we don’t know. This distribution has a mean µ ≡ 〈x〉, and a variance σ2. (The term

“standard deviation” is used for σ, the square root of the variance.) We denote an average over

the exact distribution by angular brackets, e.g.

µ ≡ 〈x〉 =

∫
x P (x) dx . (1a)

σ2 ≡ 〈 (x − 〈x〉)2 〉 = 〈x2〉 − 〈x〉2 =

∫
x2 P (x) dx −

(∫
x P (x) dx

)
2

. (1b)

Our goal is to determine 〈x〉, and the uncertainty in our estimate of it, from the N data points

xi. In order to do this we will assume that the data are uncorrelated with each other. This is a

crucial assumption, without which it is very difficult to proceed. However, it is not always clear

if the data points are truly independent of each other; some correlations may be present but not

immediately obvious. Here, we take the usual approach of assuming that even if there are some

correlations, they are sufficiently weak so as not to significantly perturb the results of the analysis.

The information from the data is usefully encoded in two parameters, the sample mean x and
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the sample standard deviation s which are defined by1

x =
1

N

N∑

i=1

xi, (2a)

s2 ≡ 1

N

N∑

i=1

(xi − x)2 (2b)

= (x − x)2 = x2 − (x)2 =
1

N

N∑

i=1

x2

i −
(

1

N

N∑

i=1

xi

)2

. (2c)

In statistics, notation is often confusing but crucial to understand. Here, an average indicated by

an over-bar, · · ·, is an average over the sample of N data points. This is to be distinguished from

an exact average over the distribution 〈· · · 〉, as in Eqs. (1a) and (1b). The latter is, however, just

a theoretical construct since we don’t know the distribution P (x), only the set of N data points xi

which have been sampled from it.

Now we describe an important thought experiment. Let’s suppose that we could repeat the set

of N measurements very many many times, each time obtaining a value of the sample average x.

From these results we could construct a distribution, P̃ (x), for the sample average as shown in

Fig. 1.

If we do enough repetitions we are effectively averaging over the exact distribution. Hence the

average of the sample mean, x, over very many repetitions of the data, is given by

〈x〉 =
1

N

N∑

i=1

〈xi〉 = 〈x〉 ≡ µ , (3)

i.e. it is the exact average over the distribution of x, as one would intuitively expect, see Fig. 1.

In fact, though, we have only the one set of data, so we can not determine µ exactly. However,

Eq. (3) shows that

the best estimate of µ is x, (4)

i.e. the sample mean, since averaging the sample mean over many repetitions of the N data points

gives the true mean of the distribution, µ. An estimate like this, which gives the exact result if

averaged over many repetitions of the experiment, is said to be unbiased .

1 The sample variance is often defined with a factor of N − 1 rather than N in Eq. (2b). However, to me this seems
unnatural, and I prefer to define the sample variance in the naive way as the variance over the data. The reason
that N − 1 is often put here, is so the factor of (N − 1)/N in Eqs. (6d) and (7) becomse unity, and the factor of
N − 1 in Eqs. (8) and (10) becomes N . Of course, these differences are negligible for large N .
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FIG. 1: The distribution of results for the sample mean x obtained by repeating the measurements of the

N data points xi many times. The average of this distribution is µ, the exact average value of x,

We would also like an estimate of the uncertainty or “error bar” in our estimate of x for the

exact average µ. This would be useful, for example, if we have a theoretical prediction for its

value and would like to know if the experiment agrees with it. We can’t tell unless we know the

uncertainty in the experimental estimate.

We take σx, the standard deviation in x (obtained if one did many repetitions of the N mea-

surements), to be the uncertainty, or error bar, in x. This is the width of the distribution P̃ (x)

shown in Fig. 1. A single estimate x typically differs from the exact result µ by an amount of order

σx.

We shall now show that the variance of the mean of a set of N random variables is the variance

of one variable divided by N . To see this, we have

σ2

x ≡ 〈x2〉 − 〈x〉2 = 〈
(

1

N

N∑

i=1

xi

)2

〉 − 〈
(

1

N

N∑

i=1

xi

)
〉2 (5a)

=
1

N2

N∑

i=1

(〈xixj〉 − 〈xi〉〈xj〉) (5b)

=
1

N2

N∑

i=1

(
〈x2

i 〉 − 〈xi〉2
)

(5c)

=
1

N

(
〈x2〉 − 〈x〉2

)
(5d)

=
σ2

N
. (5e)

To get from Eq. (5b) to Eq. (5c) we note that, for i 6= j, 〈xixj〉 = 〈xi〉〈xj〉 since xi and xj are
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assumed to be statistically independent. (This is where the statistical independence of the data

is needed.) We have already met Eq. (5e) in the handout on “The Distribution of the Sum of

Random Variables”.

The problem with Eq. (5e) is that we don’t know σ2 since it is a function of the exact

distribution P (x). We do, however, know the sample variance s2, see Eq. (2b), and the average of

this over many repetitions of the N data points, is related to σ2 since

〈s2〉 =
1

N

N∑

i=1

〈x2

i 〉 −
1

N2

N∑

i=1

N∑

j=1

〈xixj〉 (6a)

= 〈x2〉 − 1

N2

[
N(N − 1)〈x〉2 + N〈x2〉

]
(6b)

=
N − 1

N

[
〈x2〉 − 〈x〉2

]
(6c)

=
N − 1

N
σ2 . (6d)

To get from Eq. (6a) to Eq. (6b), we have separated the terms with i = j in the last term of

Eq. (6a) from those with i 6= j, and used the facts that each of the xi is chosen from the same

distribution and is statistically independent of the others. It follows from Eq. (6d) that

the best estimate of σ2 is
N

N − 1
s2 , (7)

since averaging [N/(N − 1)]s2 over many repetitions of N data points gives σ2. The estimate for

σ2 in Eq. (7) is therefore unbiased.

Combining Eqs. (5e) and (7) gives

the best estimate of σ2

x is
s2

N − 1
. (8)

This estimate is also unbiased. We have now obtained, using only information from from the data,

that the mean is given by

µ = x ± σx . (9)

where we estimate

σx =
s√

N − 1
. (10)

Remember that x and s are the mean and standard deviation of the (one set) of data that is

available to us, see Eqs. (2a) and (2b).
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As an example, suppose N = 5 and the data points are

xi = 10, 11, 12, 13, 14, (11)

(not very random looking data it must be admitted). Then, from Eq. (2a) we have x = 12, and

from Eq. (2b)

s2 =
1

5

[
(−2)2 + (−1)2 + 02 + 12 + 22

]
=

10

5
= 2. (12)

Hence, from Eq. (10),

σx =
1√
4

√
2 =

1√
2
. (13)

so

µ = x ± σx = 12 ± 1√
2
. (14)

Neglecting factors of −1 compared with N (which is fine if we are dealing with N quite large,

the usual case) we see from Eq. (6d) that s is equal to σ and hence, from Eq. (10), that

the error bar in the mean goes down like 1/
√

N .

Hence, to reduce the error bar by a factor of 10 one needs 100 times as much data. This is

discouraging, but is a fact of life when dealing with random noise.

For Eq. (10) to be really useful we need to know the probability that the true answer µ lies more

than σx away from our estimate x. Fortunately, for large N the central limit theorem tells us (for

distributions where the first two moments are finite) that the distribution of x is a Gaussian. For

this distribution we know that the probability of finding a result more than one standard deviation

away from the mean is 32%, more than two standard deviations is 4.5% and more than three

standard deviations is 0.3%. Hence we expect that most of the time x will be within σxu of the

correct result µ, and only occasionally will be more than two times σx from it. Even if N is not

very large, so there are some deviations from the Gaussian form, the above numbers are usually a

reasonable guide.

Hence, if the theoretical prediction differs from the experimental value of x by several times σx,

or more, there is likely to be either some systematic error in the experiment, or the theory does

not apply.

As an aside, although scientists usually quote σx as the statistical uncertainty in x, by conven-

tion, surveys of voters in elections use 2σx as a measure of the statistical uncertainty.


