## Physics 116C

## The differential equation satisfied by Bessel functions

Peter Young

(Dated: October 22, 2009)

In class we introduced Bessel functions through the generating function

$$
\begin{equation*}
g(t, x)=\exp \left[\frac{x}{2}\left(t-\frac{1}{t}\right)\right]=\sum_{n=-\infty}^{\infty} J_{n}(x) t^{n} . \tag{1}
\end{equation*}
$$

One reason why Bessel functions are important in physics is that they satisfy the following differential equation (Bessel's equation)

$$
\begin{equation*}
x^{2} J_{n}^{\prime \prime}(x)+x J_{n}^{\prime}(x)+\left(x^{2}-n^{2}\right) J_{n}(x), \tag{2}
\end{equation*}
$$

which arises in the solution of several partial differential equations in cylindrical polar coordinates.
To show that the $J_{n}(x)$, defined by Eq. (1), satisfy Eq. (2) requires a bit of boring algebra, which is given in this handout.

First of all differentiate Eq. (1) with respect to $t$ :

$$
\begin{equation*}
\frac{\partial g(t, x)}{\partial t}=\frac{x}{2}\left(1+\frac{1}{t^{2}}\right) \exp \left[\frac{x}{2}\left(t-\frac{1}{t}\right)\right]=\frac{x}{2}\left(1+\frac{1}{t^{2}}\right) \sum_{n=-\infty}^{\infty} J_{n}(x) t^{n} \tag{3}
\end{equation*}
$$

But the partial derivative is equal to $\sum_{n} n t^{n-1} J_{n}(x)$, and so we have

$$
\begin{equation*}
\sum_{n} n t^{n-1} J_{n}(x)=\frac{x}{2} \sum_{m} t^{m} J_{m}(x)+\frac{x}{2} \sum_{k} t^{k-2} J_{k}(x), \tag{4}
\end{equation*}
$$

where we have deliberately used different names for the summation variables for reasons that will now follow. We define $k=n+1$ and $m=n-1$ to get

$$
\begin{equation*}
\sum_{n} n J_{n}(x) t^{n-1}=\frac{x}{2} \sum_{n}\left[J_{n-1}(x)+J_{n+1}(x)\right] t^{n-1} \tag{5}
\end{equation*}
$$

which displays explicitly the coefficient of $t^{n-1}$ on both sides of the equation. Equating the coefficients gives

$$
\begin{equation*}
J_{n-1}(x)+J_{n+1}(x)=\frac{2 n}{x} J_{n}(x), \tag{6}
\end{equation*}
$$

which is a recurrence relation for the $J_{n}$. If we know $J_{n-1}(x)$ and $J_{n}(x)$, then we can use the recurrence relation to determine $J_{n+1}(x)$.

To obtain the differential equation, Eq. (2), we need to differentiate the generating function, Eq. (1), with respect to $x$. This gives

$$
\begin{equation*}
\sum_{n} J_{n}^{\prime}(x) t^{n}=\frac{1}{2}\left(t-\frac{1}{t}\right) \sum_{n} J_{n}(x) t^{n} \tag{7}
\end{equation*}
$$

Following the same method as we used to get Eq. (5) we can display explicitly the coefficients of $t^{n}$ on both sides of the equation and equate them. This gives

$$
\begin{equation*}
J_{n-1}(x)-J_{n+1}(x)=2 J_{n}^{\prime}(x) . \tag{8}
\end{equation*}
$$

As a special case, consider $n=0$. Since we already know that $J_{-1}(x)=-J_{1}(x)$, Eq. (8) gives

$$
\begin{equation*}
J_{0}^{\prime}(x)=-J_{1}(x) . \tag{9}
\end{equation*}
$$

To proceed we add Eqs. (6) and (8) and divide by 2, which gives

$$
\begin{equation*}
x J_{n}^{\prime}(x)=x J_{n-1}(x)-n J_{n}(x), \tag{10}
\end{equation*}
$$

which has the advantage that it only involves two values of $n$. Similarly, we subtract Eq. (8) from Eq. (6) and divide by 2, which gives

$$
\begin{equation*}
x J_{n}^{\prime}(x)=-x J_{n+1}(x)+n J_{n}(x) . \tag{11}
\end{equation*}
$$

It is sometimes useful to rewrite Eqs. (10) and (11) in a different way as follows. Equation (10) can be written

$$
\begin{equation*}
x J_{n}^{\prime}(x)+n J_{n}(x)=x J_{n-1}(x) \tag{12}
\end{equation*}
$$

and multiplying by $x^{n-1}$ gives

$$
\begin{equation*}
\frac{d}{d x}\left(x^{n} J_{n}(x)\right)=x^{n} J_{n-1}(x) . \tag{13}
\end{equation*}
$$

Similarly Eq. (11) can be written

$$
\begin{equation*}
\frac{d}{d x}\left(x^{-n} J_{n}(x)\right)=-x^{-n} J_{n-1}(x) . \tag{14}
\end{equation*}
$$

To obtain Bessel's equation we differentiate Eq. (10) w.r.t. $x$ which gives

$$
\begin{equation*}
x J_{n}^{\prime \prime}(x)+(n+1) J_{n}^{\prime}(x)-n J_{n}^{\prime}(x)-x J_{n-1}^{\prime}(x)=0 . \tag{15}
\end{equation*}
$$

[Eq. (15) times $x]$ minus [Eq. (10) times $n$ ] gives

$$
\begin{equation*}
x^{2} J_{n}^{\prime \prime}(x)+x J_{n}^{\prime}(x)-n^{2} J_{n}(x)-x^{2} J_{n-1}^{\prime}(x)+(n-1) x J_{n-1}(x)=0 . \tag{16}
\end{equation*}
$$

This almost gives the desired result, Eq. (2), but we need to rearrange the last two terms in terms of $J_{n}$ rather than $J_{n-1}$. This can be done by taking Eq. (11) with $n$ replaced by $n-1$, i.e.

$$
\begin{equation*}
(n-1) J_{n-1}(x)-x J_{n-1}^{\prime}(x)=x J_{n}(x) . \tag{17}
\end{equation*}
$$

Substituting this into Eq. (16) gives Bessel's equation

$$
\begin{equation*}
x^{2} J_{n}^{\prime \prime}(x)+x J_{n}^{\prime}(x)+\left(x^{2}-n^{2}\right) J_{n}(x), \tag{18}
\end{equation*}
$$

as desired.
We should point out that one can also verify Bessel's equation starting from the series expansion definition of Bessel functions that we discussed in class.

