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In class we introduced Bessel functions through the generating function

g(t, x) = exp

[

x

2

(

t −
1

t

)]

=

∞
∑

n=−∞

Jn(x)tn . (1)

One reason why Bessel functions are important in physics is that they satisfy the following

differential equation (Bessel’s equation)

x2J ′′

n(x) + xJ ′

n(x) + (x2
− n2)Jn(x) , (2)

which arises in the solution of several partial differential equations in cylindrical polar coordinates.

To show that the Jn(x), defined by Eq. (1), satisfy Eq. (2) requires a bit of boring algebra,

which is given in this handout.

First of all differentiate Eq. (1) with respect to t:

∂g(t, x)
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) ∞
∑

n=−∞

Jn(x)tn . (3)

But the partial derivative is equal to
∑

n
ntn−1Jn(x), and so we have

∑

n

ntn−1Jn(x) =
x

2

∑

m

tmJm(x) +
x

2

∑

k

tk−2Jk(x) , (4)

where we have deliberately used different names for the summation variables for reasons that will

now follow. We define k = n + 1 and m = n − 1 to get

∑

n

nJn(x)tn−1 =
x

2

∑

n

[Jn−1(x) + Jn+1(x)] tn−1 , (5)

which displays explicitly the coefficient of tn−1 on both sides of the equation. Equating the coeffi-

cients gives

Jn−1(x) + Jn+1(x) =
2n

x
Jn(x) , (6)

which is a recurrence relation for the Jn. If we know Jn−1(x) and Jn(x), then we can use the

recurrence relation to determine Jn+1(x).
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To obtain the differential equation, Eq. (2), we need to differentiate the generating function,

Eq. (1), with respect to x. This gives

∑

n

J ′

n(x)tn =
1

2

(

t −
1

t

)

∑

n

Jn(x)tn. (7)

Following the same method as we used to get Eq. (5) we can display explicitly the coefficients of

tn on both sides of the equation and equate them. This gives

Jn−1(x) − Jn+1(x) = 2J ′

n(x) . (8)

As a special case, consider n = 0. Since we already know that J−1(x) = −J1(x), Eq. (8) gives

J ′

0(x) = −J1(x) . (9)

To proceed we add Eqs. (6) and (8) and divide by 2, which gives

xJ ′

n(x) = xJn−1(x) − nJn(x) , (10)

which has the advantage that it only involves two values of n. Similarly, we subtract Eq. (8) from

Eq. (6) and divide by 2, which gives

xJ ′

n(x) = −xJn+1(x) + nJn(x) . (11)

It is sometimes useful to rewrite Eqs. (10) and (11) in a different way as follows. Equation (10)

can be written

xJ ′

n(x) + nJn(x) = xJn−1(x) (12)

and multiplying by xn−1 gives

d

dx
(xnJn(x)) = xnJn−1(x) . (13)

Similarly Eq. (11) can be written

d

dx

(

x−nJn(x)
)

= −x−nJn−1(x) . (14)

To obtain Bessel’s equation we differentiate Eq. (10) w.r.t. x which gives

xJ ′′

n(x) + (n + 1)J ′

n(x) − nJ ′

n(x) − xJ ′

n−1(x) = 0 . (15)

[Eq. (15) times x] minus [Eq. (10) times n] gives

x2J ′′

n(x) + xJ ′

n(x) − n2Jn(x) − x2J ′

n−1(x) + (n − 1)xJn−1(x) = 0. (16)
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This almost gives the desired result, Eq. (2), but we need to rearrange the last two terms in terms

of Jn rather than Jn−1. This can be done by taking Eq. (11) with n replaced by n − 1, i.e.

(n − 1)Jn−1(x) − xJ ′

n−1(x) = xJn(x) . (17)

Substituting this into Eq. (16) gives Bessel’s equation

x2J ′′

n(x) + xJ ′

n(x) + (x2
− n2)Jn(x) , (18)

as desired.

We should point out that one can also verify Bessel’s equation starting from the series expansion

definition of Bessel functions that we discussed in class.


