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1 Homogeneous Equations

We have studied, especially in a long HW problem, second order linear homogeneous differential equa-
tions which can be written as an eigenvalue problem of the form

Lyn(x) = λnyn(x) , (1)

where L is an operator involving derivatives, λn is an eigenvalue and yn(x) is an eigenfunction (which
satisfies some specified boundary conditions). The general case that we are interested in is called a
“Sturm-Liouville” problem, for which one can show that the eigenvalues are real, and the eigenfunctions
are orthogonal, i.e.

∫ b

a

yn(x)ym(x) dx = δn m , (2)

where a and b are the upper and lower limits of the region where we are solving the problem, and we
have also “normalized” the solutions1.

A simple example, which we will study in detail, will be2

y′′ + 1

4
y = λy , (3)

in the interval 0 ≤ x ≤ π, with the boundary conditions y(0) = y(π) = 0. This corresponds to

L =
d2

dx2
+

1

4
. (4)

This is just the simple harmonic oscillator equation, and so the solutions are cos kx and sin kx. The
boundary condition y(0) = 0 eliminates cos kx and the condition y(π) = 0 gives k = n a positive integer.
(Note: For n = 0 the solution vanishes and taking n < 0 just gives the same solution as that for the
corresponding positive value of n because sin(−nx) = − sin(nx). Hence we only need consider positive
integer n.) The normalized eigenfunctions are therefore

yn(x) =

√

2

π
sinnx, (n = 1, 2, 3, · · · ), (5)

and the eigenvalues in Eq. (3) are
λn = 1

4
− n2 , (6)

since the equation satisfied by yn(x) is y′′n + n2yn = 0.

1The general Sturm-Liouville problem has a “weight function” w(x) multiplying the eigenvalue on the RHS of Eq. (1)
and the same weight function multiplies the integrand shown in the LHS of the orthogonality and normalization condition,
Eq. (2). Furthermore the eigenfunctions may be complex, in which case one must take the complex conjugate of either yn

or ym in in Eq. (2). Here, to keep the notation simple, we will just consider examples with w(x) = 1 and real eigenfunctions.
2Different books adopt different sign conventions for the definition of L, and hence of the Green’s functions.
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2 Inhomogeneous Equations

Green’s functions, the topic of this handout, appear when we consider the inhomogeneous equation
analogous to Eq. (1)

Ly(x) = f(x) , (7)

where f(x) is some specified function of x. The idea of the method is to determine the “Green’s
function”, G(x, x′), which is given by the solution of the equation

LG(x, x′) = δ(x − x′) , (8)

for the specified boundary conditions. In Eq. (8), the differential operators in L act on x, and x′ is a
constant. Once G has been determined, the solution of Eq. (7) can be obtained for any function f(x)
from

y(x) =

∫

G(x, x′)f(x′) dx′ , (9)

which follows since

Ly(x) = L

∫

G(x, x′)f(x′) dx′ =

∫

δ(x − x′)f(x′) dx = f(x) , (10)

so y(x) satisfies Eq, (7) as required. Note that we used Eq. (8) to obtain the second equality in Eq. (10).
We emphasize that the same Green’s function applies for any f(x), and so it only has to be calculated
once for a given differential operator L and boundary conditions.

3 Expression for the Green’s functions in terms of eigenfunctions

In this section we will obtain an expression for the Green’s function in terms of the eigenfunctions yn(x)
of the homogeneous equation, Eq. (1).

We assume that the solution y(x) of the inhomogeneous equation, Eq. (7), can be written as a linear
combination of the eigenfunctions yn(x), obtained with the same boundary conditions, i.e.

y(x) =
∑

n

cn yn(x) , (11)

for some choice of the constants cn. Substituting into Eq. (7) gives

f(x) = Ly(x) =
∑

n

cnLyn(x) =
∑

n

cnλnyn(x). (12)

To determine the cn we multiply by one of the eigenfunctions, ym(x) say, and integrate use the orthog-
onality of the eigenfunctions, Eq. (2). This gives

∫ b

a

f(x)ym(x) dx =
∑

n

cnλn

∫ b

a

yn(x)ym(x) dx = cmλm . (13)

Substituting for cn into Eq. (11) gives

y(x) =
∑

n

1

λn

∫ b

a

yn(x′)f(x′) dx′ yn(x) , (14)
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which can be written in the form of Eq. (9) with

G(x, x′) =
∑

n

1

λn

yn(x)yn(x′) . (15)

Note that G(x, x′) is a symmetric function of x and x′ which is a quite general result. Furthermore,
it only depends on the eigenfunctions of the corresponding homogeneous equation, i.e. on the boundary
conditions and L. It is independent of f(x) and so can be computed once and for all, and then applied
to any f(x) just by doing the integral in Eq. (9).

4 A simple example

As an example, let us determine the solution of the inhomogeneous equation corresponding to the
homogeneous equation in Eq. (3), i.e.

y′′ + 1

4
y = f(x), with y(0) = y(π) = 0 . (16)

First we will evaluate the solution by elementary means for two choices of f(x)

(i) f(x) = sin 2x, (ii) f(x) = x/2 . (17)

We will then obtain the solutions for these cases from the Green’s function determined according to
Eq. (15).

In the elementary approach, one writes the solution of Eq. (16) as a combination of a complementary
function yc(x) (the solution with f(x) = 0) and the particular integral yp(x) (a particular solution with
f(x) included). Since, for f(x) = 0, the equation is the simple harmonic oscillator equation, yc(x) is
given by

yc(x) = A cos(x/2) + B sin(x/2). (18)

For the particular integral, we assume that yp(x) is of a similar form to f(x). We now determine the
solution for the two choices of f(x) in Eq. (16).

(i) For f(x) = sin 2x we try yp(x) = C cos 2x + D sin 2x and substituting gives (−4 + 1/4)D = 1, and
C = 0. This gives

y(x) = yc(x) + yp(x) = −
4

15
sin 2x + A cos(x/2) + B sin(x/2) . (19)

The boundary conditions are y(0) = y(π) = 0, which gives A = B = 0. Hence

y(x) = −
4

15
sin 2x, for f(x) = sin 2x. (20)

(ii) Similarly for f(x) = x we try yp(x) = C + Dx and substituting into Eq. (16) gives C = 0, D = 2,
and so

y(x) = yc(x) + yp(x) = 2x + A cos(x/2) + B sin(x/2) . (21)

The boundary conditions, y(0) = y(π) = 0, give A = 0, B = −2π. Hence

y(x) = 2x − 2π sin(x/2), for f(x) = x/2. (22)

This is plotted in the figure below
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Now lets work out the Green’s function, which is given by Eq. (15). The eigenfunction are given by
(5) and the eigenvalues are given by Eq. (6) so we have

G(x, x′) =
2

π

∞
∑

n=1

sinnx sin nx′

1

4
− n2

. (23)

We can now substitute this into Eq. (9) to solve Eq. (16) for the two choices of f(x) in Eq. (17).

(i) First of all for f(x) = sin 2x Eq. (9) becomes

y(x) =
2

π

∫ π

0

(

∞
∑

n=0

sinnx sinnx′

1

4
− n2

)

sin 2x′ dx′ =
2

π

∞
∑

n=0

sinnx
1

4
− n2

∫ π

0

sinnx′ sin 2x′ dx′. (24)

Because of the orthogonality of the sinnx in the interval from 0 to π only the n = 2 term
contributes, and the integral for this case is π/2. Hence the solution is

y(x) =
sin 2x
1

4
− 22

= −
4

15
sin 2x. (25)

in agreement with Eq. (20).

(ii) Now we consider the case of f(x) = x/2. Substituting Eq, (23) into Eq. (9) gives

y(x) =
1

π

∞
∑

n=0

sinnx
1

4
− n2

∫ π

0

x′ sinnx′ dx′. (26)

There is no longer any orthogonality to simplify things and we just have to do the integral:

∫ π

0

x′ sinnx′ dx′ =

[

−
x′ cos nx′

n

]π

0

+

∫ π

0

cos nx′

n
dx′ (27)

= −
π cos nπ

n
+

[

sinnx′

n2

]π

0

(28)

= −(−1)n π

n
. (29)
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For the particular case of n = 0 the integral is zero. Hence the solution is

y(x) =
∞
∑

n=1

(−1)n+1 sinnx

n( 1

4
− n2)

. (30)

This may not look the same as Eq. (22), but it is in fact, as one can check by expanding 2x −

2π sinx/2 as a Fourier sine series in the interval 0 to π, i.e. one writes

2x − 2π sinx/2 =
∞
∑

n=1

cn sinnx, (31)

and determines the cn from the usual Fourier integral.

Using the Green’s function may seem to be a complicated way to proceed, especially for our second
choice of f(x). However, you should realize that the “elementary” derivation of the solution may not be
so simple in other cases, and you should note that the Green’s function applies to all possible choices
of the function on the RHS, f(x). Furthermore, we will see in the next section that one can often get a
closed form expression for G, rather than an infinite series. It is then much easier to find a closed form
expression for the solution.

5 Closed form expression for the Green’s function

In many useful cases, one can obtain a closed form expression for the Green’s function by starting with
the defining equation, Eq. (8). We will illustrate this for the example in the previous section for which
Eq. (8) is

G′′ + 1

4
G = δ(x − x′) . (32)

Remember that x′ is fixed (and lies between 0 and π) while x is a variable, and the derivatives are with
respect to x. We solve this equation separately in the two regions (i) 0 ≤ x < x′, and (ii) x′ < x ≤ π.
In each region separately the equation is G′′ + (1/4)G = 0, for which the solutions are

G(x, x′) = A cos(x/2) + B sin(x/2) , (33)

where A and B will depend on x′. Since y(0) = 0, we require G(0, x′) = 0 (recall Eq. (9)) and so, for
the solution in the region 0 ≤ x < x′, the cosine is eliminated. Similarly G(π, x′) = 0 and so, for the
region x′ < x ≤ π, the sine is eliminated. Hence the solution is

G(x, x′) =

{

B sin(x/2) (0 ≤ x < x′),
A cos(x/2) (x′ < x ≤ π).

(34)

How do we determine the two coefficients A and B? We get one relation between them by requiring
that the solution is continuous at x = x′, i.e. the limit as x → x′ from below is equal to the limit as
x → x′ from above. This gives

B sin(x′/2) = A cos(x′/2) . (35)

The second relation between A and B is obtained by integrating Eq. (32) from x = x′ − ǫ to x′ + ǫ, and
taking the limit ǫ → 0, which gives

lim
ǫ→0

[

dG

dx

]x′+ǫ

x′
−ǫ

+ 1

4
lim
ǫ→0

∫ x′+ǫ

x′
−ǫ

G(x, x′) dx = lim
ǫ→0

∫ x′+ǫ

x′
−ǫ

δ(x − x′) dx (36)

so

lim
ǫ→0

(

dG

dx

∣

∣

∣

∣

x′+ǫ

−
dG

dx

∣

∣

∣

∣

x′
−ǫ

)

+ 0 = 1 . (37)
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Hence dG/dx has a discontinuity of 1 at x = x′, i.e.

−
A

2
sin(x′/2) −

B

2
cos(x′/2) = 1. (38)

Solving Eqs. (35) and (38) gives

B = −2 cos(x′/2), (39)

A = −2 sin(x′/2). (40)

Substituting into Eq. (34) gives

G(x, x′) =

{

−2 cos(x′/2) sin(x/2) (0 ≤ x < x′),
−2 sin(x′/2) cos(x/2) (x′ < x ≤ π).

(41)

A sketch of the solution is shown in the figure below. The discontinuity in slope at x = x′ (I took
x′ = 3π/4) is clearly seen.

It is instructive to rewrite Eq. (41) in terms of x<, the smaller of x and x′, and x>, the larger of x
and x′. One has

G(x, x′) = −2 sin(x</2) cos(x>/2) , (42)

irrespective of which is larger, which shows that G is symmetric under interchange of x and x′ as noted
earlier.

We now apply the closed form expression for G in Eq. (41) to solve our simple example, Eq. (16),
with the two choices for f(x) shown in Eq. (17).

(i) For f(x) = sin 2x, Eqs. (9) and (41) give

y(x) = −2 cos(x/2)

∫ x

0

sin 2x′ sin(x′/2) dx′ − 2 sin(x/2)

∫ π

x

sin 2x′ cos(x′/2) dx′. (43)

Using formulae for sines and cosines of sums of angles and integrating gives

y(x) = −2 cos(x/2)

(

sin(3x/2)

3
−

sin(5x/2)

5

)

− 2 sin(x/2)

(

cos(3x/2)

3
+

cos(5x/2)

5

)

(44)

= −2

(

1

3
sin 2x

)

+ 2

(

1

5
sin 2x

)

(45)

= −
4

15
sin 2x , (46)
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where we again used formulae for sums and differences of angles. This result is in agreement with
Eq. (20).

(ii) For f(x) = x/2, Eqs. (9) and (41) give

y(x) = − cos(x/2)

∫ x

0

x′ sin(x′/2) dx′ − sin(x/2)

∫ π

x

x′ cos(x′/2) dx′ (47)

Integrating by parts gives

y(x) = − cos(x/2) (−2x cos(x/2) + 4 sin(x/2)) − sin(x/2) (2π − 4 cos(x/2) − 2x sin(x/2)) ,(48)

= 2x − 2π sin(x/2) , (49)

which agrees with Eq. (22). Note that we obtained the closed form result explicitly, as opposed
to the method in Sec. 3 where the solution was obtained as an infinite series, Eq. (30).

In general, to find a closed form expression for G(x, x′) we note from Eq. (8) that, for x 6= x′, it
satisfies the homogeneous equation

LG(x, x′) = 0, (x 6= x′) . (50)

We solve this equation separately for x < x′ and x > x′, subject to the required boundary conditions,
and match the solutions at x = x′ with the following two conditions

(i) G(x, x′) is continuous at x = x′, i.e.

lim
x→x′+ǫ

G(x, x′) = lim
x→x′

−ǫ
G(x, x′) . (51)

(ii) The derivative dG/dx has a discontinuity of 1 at x = x′, i.e.

lim
x→x′+ǫ

dG(x, x′)

dx
− lim

x→x′
−ǫ

dG(x, x′)

dx
= 1 . (52)

6 Summary

We have shown how to solve linear, inhomogeneous, ordinary differential equations by using Green’s
functions. These can be represented in terms of eigenfunctions, see Sec. 3, and in many cases can
alternatively be evaluated in closed form, see Secs. 4 and 5. The advantage of the Green’s function
approach is that the Green’s function only needs to be computed once for a given differential operator
L and boundary conditions, and this result can then be used to solve for any function f(x) on the RHS
of Eq. (7) by using Eq. (9).

In this handout we have used Green’s function techniques for ordinary differential equations. They
can also be used, in a very simple manner, for partial differential equations.

The advantages of Green’s functions may not be readily apparent from the simple examples presented
here. However, they are used in many advanced applications in physics.
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