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I. INTRODUCTION

One can show that, for the Fourier transform

g(k) =

∫ ∞

−∞
f(x)eikx dx

to converge as the limits of integration tend to ±∞, we must have f(x) → 0 as |x| → ∞. In

addition, we have seen that the formula relating g1(k), the Fourier transform of the derivative

f ′(x), to g(k), namely

g1(k) = −ikg(k)

also only holds if f(x) vanishes for |x| → ∞. Hence standard Fourier transforms only apply to

functions which vanish at infinity.

Nonetheless, Fourier transforms are so useful that it is desirable to apply them to some functions

which do not satisfy this condition. These transforms are known as “singular Fourier transforms”

and will need some form of “regularization” to make the integrals converge.

NOTE: for this course, the important sections are II and III.

II. A SINGULAR FOURIER TRANSFORM INVOLVING A DELTA FUNCTION

As an example consider f(x) = 1. In order that the Fourier transform g(k) exists, we regularize

the integral by putting in the “convergence factor” e−ǫ|x| where ǫ is small and positive. Eventually

we will let ǫ tend to zero.

Hence we determine the Fourier transform of

fǫ(x) = e−ǫ|x|, (1)

which is

gǫ(k) =

∫ ∞

−∞
eikxe−ǫ|x| dx .
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We separate the integral into the negative-x region and the positive-x region to find

gǫ(k) =

∫ 0

−∞
eikxeǫx dx +

∫ ∞

0
eikxe−ǫx dx =

1

ik + ǫ
+

1

−ik + ǫ
=

2ǫ

ǫ2 + k2
. (2)

For ǫ → 0 gǫ(k) becomes a narrow high peak, the area under which is

∫ ∞

−∞

2ǫ

ǫ2 + k2
dk = 2

[

tan−1(k/ǫ)
]∞

−∞
= 2π.

It is therefore convenient to define a quantity δǫ(k) by

δǫ(k) =
1

π

ǫ

ǫ2 + k2
, (3)

which has unit area under it.

We now conside the limit ǫ → 0+, for which δǫ(k) is a representation of what is known as the

Dirac delta function δ(k). This is an “infinitely high, infinitely narrow” peak with unit area under

it. It is defined by the two relations

δ(x) = 0, (x 6= 0), (4)
∫

δ(x) dx = 1, (if region of integration includes x = 0). (5)

From these, it is straightforward to prove the following results:

∫

δ(x − a)f(x) dx = f(a), (6)

δ(cx) =
δ(x)

|c| , (7)

where the region of integration in Eq. (6) includes x = a. You should have seen Eqs. (6) and (7)

before. If you are unfamiliar with them, you should take the trouble to derive them.

From Eqs. (2) and (3) we have

∫ ∞

−∞
eikxe−ǫ|x| dx = 2πδǫ(k). (8)

This is a Fourier transform, for which I use the following notation:

e−ǫ|x| −→FT 2πδǫ(k) . (9)

The integral in Eq. (8) is well defined because the e−ǫ|x| factor ensures convergence.

Equations like Eq. (8) are generally used in situations when they are multiplied on both sides

by a smooth function of k, u(k) say, and integrated, i.e.

∫ ∞

−∞
u(k)

[
∫ ∞

−∞
eikxe−ǫ|x| dx

]

dk = 2π

∫

u(k)δǫ(k) dk. (10)
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It turns out that this equation is well behaved if ǫ is set to zero on the LHS (and the limit ǫ → 0

is taken on the RHS). This gives

∫ ∞

−∞
u(k)

[
∫ ∞

−∞
eikx dx

]

dk = 2π

∫ ∞

−∞
u(k)δ(k) dk

= 2π u(0) , (11)

(which is known as Fourier’s integral). We used Eq. (6) to get the last expression. One is often

tempted to set ǫ to zero also in Eq. (8) (i.e. without multiplying it by a smooth function and

integrating), in which case we write

∫ ∞

−∞
eikx dx = 2πδ(k) . (12)

However, as it stands, Eq. (12) does not make sense because the integral does not exist. We

therefore have to understand Eq. (12) in one of the following two senses:

• As a stand-alone equation, in which case it has to be regularized by the convergence factor

e−ǫ|x|, so Eq. (12) really means Eq. (8) for ǫ tending to zero (but not strictly zero).

• Multiplied by a smooth function u(k) and integrated over k as in Eq. (10), in which case

the convergence factor is unnecessary. Equation (12) is then really a shorthand for Eq. (11).

This is normally the sense in which we understand Eq. (12).

Since Eq. (12) is a Fourier transform, we can write it as

1 −→FT 2πδ(k) , (13)

which should be compared with Eq. (9). The inverse transform then gives

f(x) =
1

2π

∫ ∞

−∞
2πδ(k)e−ikx dk = 1 ,

as required.

III. APPLICATIONS OF THE INTEGRAL REPRESENTATION OF THE DELTA

FUNCTION

In this section we give some applications of the integral representation of the delta function,

Eq. (12).
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A. Convolution Theorem

In a previous class, you have already met the convolution theorem, that is, if

F (x) =

∫ ∞

−∞
f(y)f(x − y) dy, (14)

which is the convolution of f with itself, then G(k), the Fourier transform of F (x), is simply related

to g(k), the Fourier transform of f(x), by

G(k) = g(k)2 . (15)

We will now give a simple alternative derivation of this result using the integral representation

of the delta function, and then use this method to obtain a generalized convolution theorem. We

can write Eq. (14) as

F (x) =

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 f(x1)f(x2)δ(x1 + x2 − x). (16)

Using Eq. (12) we have

F (x) =
1

2π

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

∫ ∞

−∞
dk f(x1)f(x2)e

ik(x1+x2−x). (17)

The integrals over x1 and x2 are now independent of each other and can be carried out, with the

result that

F (x) =
1

2π

∫ ∞

−∞

[
∫ ∞

−∞
f(t)eikt dt

]2

e−ikx dk, =
1

2π

∫ ∞

−∞
g(k)2e−ikx dk, (18)

which shows that F (x) is the inverse transform of g(k)2, i.e. that g(k)2 is the Fourier transform of

F (x). Hence we have obtained Eq. (15).

We can now generalize this result to the case where the convolution, rather than involving two

variables as in Eq. (16), involves n variables, x1, x2, · · · , xn, but with the same constraint that the

sum must equal some prescribed value x, i.e.

F (x) =

∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxn f(x1) · · · f(xn) δ(x1 + · · · + xn − x). (19)

Using the integral representation of the delta function, as before, the integrals over the xi decouple,

and we find

F (x) =
1

2π

∫ ∞

−∞

[
∫ ∞

−∞
f(t)eikt dt

]n

e−ikx dk, =
1

2π

∫ ∞

−∞
g(k)ne−ikx dk, (20)

which shows that the Fourier transform of F (x) is

G(k) = g(k)n, (21)
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a remarkably simple result. Equation (21) is the desired generalization of the convolution theorem,

Eq. (15), to n variables. We shall use this result in class to solve a problem in statistics.

Note: With the alternative definition of Fourier transforms, which puts in factors of
√

2π to

make the transform and the inverse transform symmetric with respect to each other, the convolution

theorem for n variables is

√
2πG(k) =

[√
2πg(k)n

]

. (22)

B. Parseval’s Theorem

Related to the convolution theorem is another useful theorem associated with the name of

Parseval. (You may recall that there is a Parseval’s theorem for Fourier series, which is actually

closely related.)

Using the Fourier transform

g(k) =

∫ ∞

−∞
f(x)eikx dx (23)

we have

∫ ∞

−∞
g(k)g⋆(k) dk =

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

∫ ∞

−∞
dk f(x1)f

⋆(x2)e
ik(x1−x2). (24)

Doing the integral over k using Eq. (12) gives 2πδ(x1 − x2), so

∫ ∞

−∞
|g(k)|2 dk = 2π

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 f(x1)f

⋆(x2)δ(x1 − x2)

= 2π

∫ ∞

−∞
|f(x)|2 dx, (25)

which is Parseval’s theorem.

Note: With the alternative definition of Fourier transforms, the factor of 2π in Eq. (25) is

missing, so there is complete symmetry between the two sides.

IV. EXAMPLES OF SINGULAR FOURIER TRANSFORMS INVOLVING A STEP

FUNCTION

It is also interesting to consider singular Fourier transforms of functions involving the (Heaviside)

step function
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(x)θ

0

1

x

θ(x) =







0, (x < 0)

1, (x > 0)
,

which is denoted H(x) in the book. Putting in the convergence factors, the Fourier transform is

just given by the x > 0 part of the transform of unity in Eq. (2), i.e. it is given by (−ik + ǫ)−1

with ǫ → 0+, which we write as

θ(x) −→FT i

k + iǫ
. (26)

This equation is to be understood in the same sense as Eq. (12), which is described in the two

“bullets” after that equation.

To determine the inverse transformation, it will be convenient, for now, to multiply the Fourier

transform of the θ function by a smooth function u(k), i.e. we calculate

i

2π

∫ ∞

−∞

u(k)e−ikx

k + iǫ
dk. (27)

The small imaginary part in the denominator is necessary for making this integral well defined.

Since the integrand has a pole at −iǫ and ǫ > 0, the contour passes passes above the pole. In the

limit of ǫ → 0+, the pole is arbitrarily close to the origin and it is convenient to deform the path

of integration so it forms a small semicircle of radius δ above the origin as shown.

δ

C

Complex k−plane
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We will take δ → 0 (though δ ≫ ǫ). Hence, for ǫ → 0

lim
ǫ→0+

∫ ∞

−∞

u(k) dk

k + iǫ
= lim

δ→0

[
∫ −δ

−∞

u(k) dk

k
+

∫ ∞

δ

u(k) dk

k

]

+

∫

C

u(z) dz

z
, (28)

where C is the semicircular contour around the origin shown in the above figure. The integral in

the square brackets, where we integrate up to a small distance below a singularity and from the

same distance above the singularity, is known as the principal value integral. It is denoted by the

symbol P, i.e.

P
∫ ∞

−∞
f(k) dk ≡ lim

δ→0

[
∫ −δ

−∞
f(k) dk +

∫ ∞

δ

f(k) dk

]

.

Along the semicircle of radius δ, we have z = δeiθ and so, for δ → 0,

∫

C

u(z) dz

z
=

∫ 0

π

u(δeiθ)
iδeiθ dθ

δeiθ
= iu(0)

∫ 0

π

dθ = −iπu(0).

Consequently we can write Eq. (28) as

lim
ǫ→0+

∫ ∞

−∞

u(k) dk

k + iǫ
= P

∫ ∞

−∞

u(k) dk

k
− iπu(0). (29)

It is frequently useful to forget about the smooth function u(k) and the integration, and write

(with ǫ → 0+ assumed)

1

k + iǫ
= P

(

1

k

)

− iπδ(k) . (30)

Similarly, we find

1

k − iǫ
= P

(

1

k

)

+ iπδ(k) . (31)

It follows from Eqs. (30) and (26) that the Fourier transform of θ(x) is given by

θ(x) −→FT iP

(

1

k

)

+ πδ(k) . (32)

.

Similarly the Fourier transform of 1 − θ(x), which takes value 1 for x < 0 and 0 for x > 0 is

given by the negative x region of the integral in Eq. (2), i.e.

1 − θ(x) −→FT −iP
(

1

k

)

+ πδ(k) . (33)

Note that adding Eqs. (32) and (33) the Fourier transform of unity is found to be 2πδ(k) as obtained

earlier.

Finally, consider the Fourier transform of the sign function



8

0

1

x

sgn(x)

−1

sgn(x) =







−1, (x < 0)

1, (x > 0)







= 2θ(x) − 1.

As we shall see, it is also convenient to define sgn(0) = 0, i.e. equal to the average of the values on

either side of the discontinuity. The sign function is the difference between the results in Eqs. (32)

and (33), i.e.

sgn(x) −→FT 2iP
(

1

k

)

. (34)

It is instructive to verify that the inverse FT of Eq. (34) gives sgn(x). We have

f(x) =
1

2π
2iP

∫ ∞

−∞

e−ikx

k
dk . (35)

By symmetry only the imaginary part of the complex exponential contributes so

f(x) =
1

π
P

∫ ∞

−∞

sin kx

k
dk , (36)

where the “principal part” symbol can now be taken away because the singularity at k = 0 is

removed once the cosine part of the integrand in Eq. (35) is eliminated. Changing variables to

k′ = kx, and noting that if x < 0 the order of limits is inverted, we get

f(x) =
1

π



























∫ ∞

−∞

sin k′

k′
dk′, (x > 0)

∫ −∞

∞

sin k′

k′
dk′, (x < 0)

=



















1 (x > 0)

−1 (x < 0)

,

i.e. f(x) = sgn(x) as required, where we used the result derived in class that
∫ ∞

−∞

sin k

k
dk = π .

Finally, if we set x = 0 in Eq. (36) we get f(0) = 0, in agreement with the general result that, at

a discontinuity, the value obtained by a Fourier transform is the average of the limiting values on

either side. The above figure illustrates that this is zero for the sign function.
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V. OTHER SINGULAR FOURIER TRANSFORMS

One can also regularize the FT of functions which grow with a power of x at large x, since

xne−ǫ|x| → 0 for any finite n and any non-zero (positive) value of ǫ. Typically the result involves

a derivative of the delta function. For example, using the methods of this handout one can show

that

x −→FT −2πiδ′(k) . (37)

However, it is not possible to regularize functions which diverge exponentially at large x, because

this divergence is too strong to be canceled by a regularization factor e−ǫ|x| in the limit ǫ → 0. For

these problems the related technique of Laplace transforms, which can treat such functions, may

be useful.

VI. SUMMARY

We have discussed several improper Fourier transforms, such as Eqs. (13). (32), (34) and (37).

Taken literally, the integrals do not exist and so, as discussed in the text, these equations have to

be understood in one of the following senses:

• As a stand-alone equation, in which case the integral in the FT has to be regularized by a

convergence factor like e−ǫ|x|.

• Both sides of the equation are multiplied by a smooth function of k and integrated, in which

case the convergence factor is unnecessary.

Equation (13) corresponds to the integral representation of the Dirac delta function, Eq. (12),

which is very useful as shown in Sec. III. As a byproduct we also obtained in Eqs. (30) and (31)

the useful result,

1

x ± iǫ
= P

(

1

x

)

∓ iπδ(x), (38)

for ǫ → 0+, which also needs to be multiplied by a smooth function and integrated in order to

make sense.
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