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Consider a random variable with a probability distribution P (x). The distribution is normalized,

i.e.

∫ ∞

−∞

P (x) dx = 1, (1)

and the average of xn (the n-the moment) is given by

〈xn〉 =

∫ ∞

−∞

xnP (x) dx . (2)

The mean, µ, and variance, σ2, are given in terms of the first two moments by

µ ≡ 〈x〉, (3a)

σ2 ≡ 〈x2〉 − 〈x〉2 . (3b)

The standard deviation, a common measure of the width of the distribution, is just the square

root of the variance, i.e. σ.

A commonly studied distribution is the Gaussian,

PGauss =
1√
2π σ

exp

[

−(x − µ)2

2σ2

]

. (4)

We have studied Gaussian integrals before and so you should be able to show that the distribution

is normalized, and that the mean and standard deviation are µ and σ respectively. The width

of the distribution is σ, since the the value of P (x) at x = µ ± σ has fallen to a fixed fraction,

1/
√

e ≃ 0.6065, of its value at x = µ. The probability of getting a value which deviates by n times

σ falls off very fast with n as shown in the table below.

n P (|x − µ| > nσ)

1 0.3173

2 0.0455

3 0.0027
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In statistics, we often meet problems were we pick N random numbers xi (this set of numbers

we call a “sample”) from a distribution and are interested in the statistics of the mean x of this

sample, where

x =
1

N

N
∑

i=1

xi. (5)

The xi might, for example, be data points which we wish to average over. We would be interested

in knowing how the sample average x deviates from the true average over the distribution 〈x〉. In

other words, we would like to find the distribution of the sample mean x if we know the distribution

of the individual points P (x). The distribution of the sample mean would tell us about the expected

scatter of results for x obtained if we repeated the determination of the sample of N numbers xi

many times.

We will actually find it convenient to determine the distribution of the sum

X =
N
∑

i=1

xi, (6)

and then then trivially convert it to the distribution of the mean at the end. We will denote the

distribution of the sum of N variables by PN (X) (so P1(X) = P (X)).

We consider the case where the distribution of all the xi are the same (this restriction can

easily be lifted) and that the distribution of the xi are statistically independent (which is not

easily lifted). The latter condition means that there are no correlations between the numbers, so

P (xi, xj) = P (xi)P (xj).

The distribution PN (X) is obtained by integrating over all the xi with the constraint that
∑

xi

is equal to the prescribed value X, i.e.

PN (X) =

∫ ∞

−∞

dx1 · · ·
∫ ∞

−∞

dxN P (x1) · · ·P (xN )δ(x1 + x2 + · · ·xN − X) . (7)

We can’t easily do the integrals because of the constraint imposed by the delta function. As dis-

cussed in class and in the handout on singular Fourier transforms, we can eliminate this constraint

by going to the Fourier transform1 of PN (X), which we call GN (k) and which is defined by

GN (k) =

∫ ∞

−∞

eikXPN (X) dX. (8)

1 In statistics the Fourier transform of a distribution is called its “characteristic function”.
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Substituting for PN (X) from Eq. (7) gives

GN (k) =

∫ ∞

−∞

eikX

∫ ∞

−∞

dx1 · · ·
∫ ∞

−∞

dxN P (x1) · · ·P (xN )δ(x1 + x2 + · · ·xN − X) dX . (9)

The integral over X is easy and gives

GN (k) =

∫ ∞

−∞

dx1 · · ·
∫ ∞

−∞

dxN P (x1) · · ·P (xN )eik(x1+x2+···+xN ), (10)

which is just the product of N identical independent Fourier transforms of the single-variable

distribution P (x), i.e.

GN (k) =

[
∫ ∞

−∞

P (t)eikt dt

]N

, (11)

or

GN (k) = G(k)N , (12)

where G(k) is the Fourier transform of P (x).

Hence to determine the distribution of the sum, PN (X), the procedure is:

1. Fourier transform the single-variable distribution P (x) to get G(k).

2. Determine GN (k), the Fourier transform of PN (X), from GN (k) = G(k)N .

3. Perform the inverse Fourier transform on GN (k) to get PN (X).

Let’s see what this gives for the case of the Gaussian distribution in Eq. (4). The Fourier

transform GGauss(k) is given by

GGauss(k) =
1√
2π σ

∫ ∞

−∞

exp

[

−(x − µ)2

2σ2

]

eikx dx,

=
eikµ

√
2π σ

∫ ∞

−∞

e−t2/2σ2

eikt dt,

= eikµe−σ2k2/2 . (13)

In the second line we made the substitution x − µ = t and in the third line we “completed the

square” in the exponent, as discussed elsewhere in the 116 sequence. The Fourier transform of a

Gaussian is therefore a Gaussian.

We immediately find

GGauss,N (k) = GGauss(k)N = eiNkµe−Nσ2k2/2, (14)
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which you will see is the same as GGauss(k) except that µ is replaced by Nµ and

σ2 is replaced by Nσ2 . Hence, when we do the inverse transform to get PGauss,N (X), we must

get a Gaussian as in Eq. (4) apart from these replacements2, i.e.

PGauss,N (X) =
1√

2πN σ
exp

[

−(X − Nµ)2

2Nσ2

]

. (15)

In other words, if the distribution of the individual data points is Gaussian, the distribution of

the sum is also Gaussian with mean and standard deviation given by

µX = Nµ, σ2
X = N σ2 . (16)

In fact this last equation is true quite generally for statistically indepednent data points, not

only for a Gaussian distribution, as we shall now show quite simply. We have

µN = 〈
N
∑

i=1

xi〉 = N〈x〉 = Nµ. (17)

σ2
X = 〈

(

N
∑

i=1

xi

)2

〉 − 〈
(

N
∑

i=1

xi

)

〉2 (18a)

=
N
∑

i=1

(〈xixj〉 − 〈xi〉〈xj〉) (18b)

=
N
∑

i=1

(

〈x2
i 〉 − 〈xi〉2

)

(18c)

= N
(

〈x2〉 − 〈x〉2
)

(18d)

= Nσ2 . (18e)

To get from Eq. (18b) to Eq. (18c) we note that, for i 6= j, 〈xixj〉 = 〈xi〉〈xj〉 since xi and xj are

assumed to be statistically independent. (This is where the statistical independence of the data is

needed.)

We now come to an important theorem, the central limit theorem, which will be derived in

another handout (using the same methods as above, i.e. using Fourier transforms). It applies to to

any distribution for which the mean and variance exist (i.e. are finite), not just a Gaussian. The

data must be statistically independen. It states that:

• The mean of the distribution of the sum is N times the mean of the single-variable distri-

bution (shown by more elementary means in Eq. (17) above).

2 Of course, one can also do the integral explicitly by completing the square to get the same result.
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• The variance of the distribution of the sum is N times the variance of the single-variable

distribution (shown by more elementary means in Eq. (18e) above).

• For any single-variable distribution, P (x), not necessarily a Gaussian, for N → ∞, the

distribution of the sum, PN (X), becomes a Gaussian, i.e. is given by Eq. (15). This amazing

result is is the reason why the Gaussian distribution plays such an important role in statistics.

We will illustrate the convergence to a Gaussian distribution with increasing N for the rectan-

gular distribution

Prect(x) =







1
2
√

3
, (|x| <

√
3) ,

0, (|x| >
√

3) ,
(19)

where the parameters have been chosen so that µ = 0, σ = 1. Fourier transforming gives

Q(k) =
1

2
√

3

∫

√
3

−
√

3
eikx dk =

sin(
√

3k)√
3k

(20)

= 1 − k2

2
+

3k4

40
− · · · .

= exp

[

−k2

2
− k4

20
− · · ·

]

.

Hence

PN (X) =
1

2π

∫ ∞

−∞

e−ikX

(

sin
√

3k√
3k

)N

dk,

which can be evaluated numerically.

As we have seen, quite generally PN (k) has mean Nµ, (= 0 here), and standard deviation
√

Nσ

(=
√

N here). Hence, to illustrate that the distributions really do tend to a Gaussian for N → ∞
I plot below the distribution of Y = X/

√
N which has mean 0 and standard deviation 1 for all N .
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Results are shown for N = 1 (the original distribution), N = 2 and 4, and the Gaussian (N = ∞).

The approach to a Gaussian for large N is clearly seen. Even for N = 2, the distribution is much

close to Gaussian than the original rectangular distribution, and for N = 4 the difference from a

Gaussian is quite small on the scale of the figure. This figure therefore provides a good illustration

of the central limit theorem.
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Equation (15) can also be written as a distribution for the sample mean x (= X/N) as3

PGauss,N (x) =

√

N

2π

1

σ
exp

[

−N(x − µ)2

2σ2

]

. (22)

Let us denote the mean (obtained from many repetitions of choosing the set of N numbers xi) of

the sample average by µx, and the standard deviation of the sample average distribution by σx.

Equation (22) tells us that

µx = µ, (23a)

σx =
σ√
N

. (23b)

Hence mean of this distribution is the exact mean µ and its standard deviation, which is a measure

of its width, is σ/
√

N , which becomes small for large N .

These statements tell us that an average over many measurements will be close to the exact

average, intuitively what one expects. For example, if one tosses a coin, it should come up heads

on average half the time. However, if one tosses a coin a small number of times, N , one would not

expect to necessarily get heads for exactly N/2 of the tosses. Six heads out of 10 tosses (a fraction

of 0.6), would intuitively be quite reasonable, and we would have no reason to suspect a biased

toss. However, if one tosses a coin a million times, intuitively the same fraction, 600,000 out of

1,000,000 tosses, would be most unlikely. From Eq. (23b) we see that these intuitions are correct

because the characteristic deviation of the sample average from the true average (1/2 in this case)

goes down proportional to 1/
√

N .

To be precise, we assign xi = 1 to heads and xi = 0 to tails so 〈xi〉 = 1/2 and 〈x2
i 〉 = 1/2 and

hence, from Eqs. (3),

µ =
1

2
, σ =

√

1

2
−
(

1

2

)2

=

√

1

4
=

1

2
. (24)

3 We obtained Eq. (22) from Eq. (15) by the replacement X = Nx. In addition the factor of 1/
√

N multiplying the
exponential in Eq. (15) becomes

√
N in Eq. (22). Why did we do this? The reason is as follows. If we have a

distribution of y, Py(y), and we write y as a function of x, we want to know the distribution of x which we call
Px(x). Now the probability of getting a result between x and x+dx must equal the probability of a result between
y and y + dy, i.e. Py(y)|dy| = Px(x)|dx|. In other words

Px(x) = Py(y)

˛

˛

˛

˛

dy

dx

˛

˛

˛

˛

. (21)

As a result, when transforming the distribution of X in Eq. (15) into the distribution of x one needs to multiply
by N . You should verify that the factor of |dy/dx| in Eq. (21) preserves the normalization of the distribution, i.e.
R

∞

−∞
Py(y)dy = 1 if

R

∞

−∞
Px(x)dx = 1.
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For a sample of N tosses, Eqs. (23) gives the sample mean and standard deviation to be

µx =
1

2
, σx =

1

2
√

N
. (25)

Hence the magnitude of a typical deviation of the sample mean from 1/2 is σx = 1/(2
√

N). For

N = 10 this is about 0.16, so a deviation of 0.1 is quite possible (as discussed above), while for

N = 106 this is 0.0005, so a deviation of 0.1 (200 times σx) is most unlikely (also discussed above).

In fact we can calculate the probability of a deviation (of either sign) of 200 or more times σx since

the central limit theorem tells us that the distribution is Gaussian for large N . The result is

2√
2π

∫ ∞

200
e−t2/2 dt = erfc

(

200√
2

)

= 5.14 × 10−2629, (26)

(where erfc is the complementary error function), i.e. very unlikely!


