Calculus I lecture notes

Mark O’Brien
September 27, 2005

Contents

1 Lecture I Appendix A, B and Section 1.1

1.1 Appendix I, II: The line and plane . . . . . ... ... ... ...
1.1.1 Basic Set Theory . . . . .. . ... ... ... ....
1.1.2  Solving Inequalities Involving Absolute Values . . . . ..
1.1.3 Solving inequalities involving quadratic terms . . . . . . .
1.1.4 Appendix B: Cartesian geometry . . . . . . . ... .. ..

1.2 Chapter I section 1: Four ways to represent a function . . . . . .

Lecture IT Section 1.1 and 1.2

2.1 Chapter 1 Section 1 Continued . . . . ... .. ... .. .....
2.1.1 Piecewise Defined Functions . . . . . .. .. ... .. ...

2.2 More Examples . . . . .. ... oL

2.3 Chapter 1 Section 3 . . . . . . . .. .. ... .. ...
2.3.1 Composing Functions . . . .. ... .. ... .. .....
2.3.2  Algebraic Manipulations of Functions . . . ... .. ...
2.3.3 Specific Examples . . ... ... oo

Lecture I'V: Section 1.6

3.1 Some definitions . . . . . .. . ...
3.2 Oneto One Functions . . . . ... .. ... ... . ........
3.3 Examples of Finding the Inverse of a Given Function . . . . . . .
34 Logs . . . . .

Lecture V: Section 2.2 and 2.3

4.1 Chaper IT Section 2: The Limit of a Function . . . . . ... ...
4.1.1 Definitions and BasicIdea . . . . . . .. .. ... .....
4.1.2 Noexistance of Limits . . . . ... .. ... ... .....
4.1.3 Onesided limits . . . .. ... ... . oL
4.1.4 Vertical Asymptote . . . . . .. .. ...

4.2 Limit Laws . . . . . . .. .. .. o
421 TheLaws . . . . . . . . . . . . .
4.2.2 Some Examples and Calculations . . . . . .. .. .. ...
4.2.3 The Squeeze Thm. . . . . ... .. .. ... ... ...,

W wNn NN

e

12
12
13
15
16



5 Lecture VIII: Section 2.7 25

5.1 The falling ball . . . . .. ... ... ... 25
5.2 Moving Away From the Example . . . . . .. ... ... ... .. 28
5.3 Examples . . . .. ... 29
6 Lecture X: Section 3.1 31
6.1 Derivatives of Constants and z™ . . . ... .. .. ... ..... 31
6.2 Constant Multiple and Sum Rule . . . . . ... .. ... ... .. 33
6.3 Derivatives of Exponential Functions . . . . . . ... .. ... .. 34

1 Lecture I Appendix A, B and Section 1.1
1.1 Appendix I, II: The line and plane

These appendices are very basic, and they should be review. You will be required to read any sections
that are not covered in class. One thing that you might not be overly familiar with are inequalities that
involve absolute value and quadradic relationships. For example, before the end of this lecture, I hope to
tell you how to find for what values of z does 22? + x < 1 hold and what values of x does 5 < |z + 1|
hold.

1.1.1 Basic Set Theory

Before getting into that, I will review some set theoritic notation including union, intersection and interval
notation. Informally, a set is a ollection objects. It is probably the most important concept in all of
mathematics. A set could be the set of days in a weekend

{ Saturday, Sunday }

M0

or it could be empty as in the set of days of the week not ending in the letter ”y”.

The primary set that we will be concerned with in this course is the set R or real numbers. This set
contains the intergers the rationals and the irrationals. Irrational numbers are numbers that can not be
written as a quotient of integers. They include 7, e, and the square root of any nonperfect square such as
2,3,5,7,8.... Of primary concern in R are the intervals. There are several forms of intervals depending
on whether or not the interval contains its endpoints. The two basic intervals are called the closed and
open interval and are denoted by [a,b] and (a,b) respectively. Where [a, b] means the set of points = on
the real line such that x is greater than or equal to a and x is less than or equal to b, and (a,b) means
the set of x such that x is strictly greater than a and strictly less than b. In symbols we write

[a,b] ={z:a <z <D}

(a,b) ={z:a <z <b}
similiarly, we can define half open and half closed intervals for example as

[a,b) = {z:a <z <b}.

The last point about set theoritical constructions that merits review is that of union and intersection.
The union of two intervals (or two sets in general) is the set formed by ”sticking” the sets together, and
the symbol | J is used. So for instance the set [a, b] | J(c, d] is the set of real numbers that are either greater
than or equal to a and less than or equal to b OR greater than or equal to ¢ and less than or equal to d.



The intersection, on the other hand, is the set of things the two sets have in common and is denoted by
(). For instance the set [a,b] (¢, d] is the set of real numbers that are either greater than or equal to a
and less than or equal to b AND greater than or equal to ¢ and less than or equal to d. Notice that the
only difference between the constuctions is the use of the word ’or’ in the first and ’and’ in the second.

1.1.2 Solving Inequalities Involving Absolute Values

The absolute value of a number a is defined to be the distance of a to the origin. It is denoted by ||a||. In
other words, the absolute value is deined as:

la] = —aifa <0
la] =aifa>0

Probably the most unfamiliar type of problem on this homework is problem 45 on page A9. I will do an
example similiar to this problem:

Example 1 Find the set of points = so that |3z + 1| = |z + 4] holds. Now, from the definition of the
absolute value, there are at most four cases to consider:

1. Both terms are negative
2. The left term is positive and the right term is negative
3. The left term is negative and the right term is positive
4. Both terms are positive.

However when we look closer, in the first case we need to consider the equation —3x — 1 = —x — 4
which is the same thing as 3z 4+ 1 = x + 4 when the negative sign is canceled from both sides. However,
this equation is exactly the same as the one that we need to consider in the forth scenerio. Similiarly, the
second and third equations are really the same thing as well. Thus we are looking for the set of points x
so that LHS = RHS or LHS = -RHS where LHS means the left hand side of the equation and RHS means
the right hand side of the equation in our example. Moreover, we notice that if either of these situations
takes place, we have that |[LHS| = |RHS|. So, proceeding with our concrete example x satisfies:

3z + 1] = |z + 4] (1)
if and only if x satisfies 3z +1=x+4 (2)
or3zx+1=—x—4. (3)

solving these two equations should be familiar to you from your basic high school algebra. We see that
our solutions are z =1 or —5/4.

O
1.1.3 Solving inequalities involving quadratic terms
It is also possible that you have yet to have seen a question along the lines of:

Example 2 Find the set of points = so that 22 — x < 2. Again, the general technique for solving such a
problem is essentially standard. There are several tricks to solving problems such as these, but I think that



these problems are simple enough to use a straight foward approach. Such an approach has the advantage
over a trick because it makes it easier to remember such an approach for an exam or quiz. It is also more
transparent in the nature of its inner workings. Here’s a general procedure for solving such problems:

1. Bring everything to one side so the equation is in the form A < 0 where A is some polynomial.

2. Factor the polynomial on the left into linear terms. All polynomials in this assignment will factor
into such linear terms (other wise the equation would have complex roots which would indicate that
the polynomial is always greater than or always less than 0).

3. Use the logic that for a product of terms is less than zero if and if one of the factors is negative (but
not both).

Let’s apply this general procedure to our specific problem.

2 - <2 (4)
2 —2-2<0 (5)
(z —2)(x+1) <0. (6)

Now comes the time where we need to think a little bit about what we have. From the final inequality
above, we know that we need to have x —2<0andz+1>0orz—2>0 and z 4+ 1 < 0. Looking closer
at the second statement this would imply that x is less than or equal to -1 and x is greater than or equal
to 2. However, this of course is impossible. Thus, we are required that z < 2 and z > —1. In the notation
developed above, this means that our solution set is [—1, 2].

solving these two equations should be familiar to you from your basic high school algebra. We see that
our solutions are z =1 or —5/4.
O

1.1.4 Appendix B: Cartesian geometry

This section should be completely review. Topics covered in this section include finding the slope of a
line and writing the equation of a line when given two points on that line. I will quickly review how to
find the slope of a line and how to compute the equation of a line in the plane. First, let’s recall a basic
statement about straight lines.

| Lines in the plane Every line in the plane is uniquely determined by its value at two points. |

What this means is if we have to lines /3 and ls, and both lines pass through two different points, then
the lines are actually the same.

1.2 Chapter I section 1: Four ways to represent a function

After touching on some of the main concepts presented in the appendices , we now begin our study
of calculus. We begin with the central concept in mathematics. That of a function. A function is
nothing more than a explicit way of expressing a particular kind of relation between two sets. I will give a
slightly less fluffy introduction to what a function is than the textbook does. I think that this is important
because most students do not understand the difference between statements such as y = 2% and f(z) = 2°.

Techniqually, a funtion f has three ingredients.

1. A set X called the domain of the function.



2. A set Y called the codomain of the function.
3. A rule.

This is written: f: X — Y The rule must satisfy two conditions:

1. For every value x in the domain there is an element y of the codomain so that the rule relates the
value x to the value y.

2. If the rule relates = both of the elements y; and ys of the codomain then y; = ys.

If the rule f assigns = to y we use the familiar notation y = f(z). Notice that while we require that every
value of the domain be used, we do not require every value of the codmain be used. The set of values
used in the codomain is known as the range. In this class since the codomain can be any set containing
the range, we will mostly only concern ourselves with the range. However, in most other math courses the
differences between the codomain and the range are very important. For example, the rule that sends x
to frac(l,x) is not a function from R to R since it does not take a value at x = 0, however the rule that
takes x to sin(z) is a function from R to R even through this function never takes any values above 1 or
below -1. We say that the sin function has range [—1, 1].

In calculus the domain and codomain (and hence the range) will almost always be subsets of R, the real
numbers. Opposed to in higher calculus classes where the domains and ranges will be subsets of R™ for
higher values of n. In graduate courses on manifolds, the domains and ranges in which one does calculus
are objects such as balls and donughts. However, a function can be a much more primative object. For
example, the rule that assigns a moment in time to the day of the week the moment occurs is a function
since every moment occurs in one and only one day of the week. However, the rule that takes a day of
the week and assigns to it the moments that occur during that day is not a function. The typical way a
function is described in highschool is as a machine that takes in values of the domain and spits out values
in the range.

Example 3
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Figure 1: The graph of the functions y = 22 and y = sin(z)

The primary way a function is depicted in this course is as a graph (see examples above). In later
sections we will describe methods for graphing functions that we encounter. A graph is defined as the set
of points {z, f(x) : x is in the domain of the function f}. We can represent this as a subset of the plane
by placing a point for every point above.

Conversly, given a subset of the plane, it is easy to tell whether or not the subset is the graph of some
function f. This is done via the so-called vertical line test. The first condition to be a function is easily
satisfied by simply letting the domain be the set of points where the function is defined. The second
however does need to be verified. This can be done by making sure that for every value of 2 (values along



the x-axis) drawing a line that is perpindicular to the axis. If for every x this line only hits one point of
the graph, we have a function. Summarizing:

The Vertical Line Test A subset of the zy-plane is the graph of some function of x
if and only if no vertical line intersects the the subset more than once.

Example 4
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Figure 2: The first subset of the plane fails the vertical line test and the second
passes. Thus the first is not the graph of any function while the second one is
(namely the function f(z) =1 — z?).

2 Lecture II Section 1.1 and 1.2

Today we finish our discussion of section 1.1, and we begin our discussion of section 1.3. We will skip
section 1.2, and we will not return to it later. Today our focus will be entirely on real valued functions.
We will compute the domain and ranges of several examples, and we will go on to describe ways of making
new functions from old ones.

2.1 Chapter 1 Section 1 Continued

I will first give you an example. The example is one of your assigned problems, and it is exercise 24 on
page 23.

Example 1 Compute the domain of the function
Sx+4
2 4+3x+2

The first thing to note about this problem is that it is not properly worded. The wording should be
to find the "maximal domain” of the function. However, this poor word choice is typical, and you should
understand what they mean by such statements. We know that our maximal domain will be a subset of
R. We want to know the mimimal number of points that we need to eliminate from the domain. To do
this we factor the denomenator 2% + 3z + 2 into it’s linear terms, (z 4+ 2)(z + 1). From this factorization,
we know that the function is not be defined at x = —2 and at x = —1. Thus, these points can not be in



the domain of the function (remember, by definition of a function every point of the domain must have a
unique element that it gets mapped to. Thus our maximal domain is (—oo, —2) | J(—2,—1) J(-1, o0).
O

2.1.1 Piecewise Defined Functions

The next topic is also a topic that should not be new to any of the students here, but it will possibly
require a couple of examples to clarify. Now, there is no reason to expect that our real valued functions
actually have a single formula to compute them (or any formula at alll). Often, in practice one needs
several formulas to describe the function.

Given two functions, f; with domain D; and fs with domain Dy, we define a third function f3 with
domain D; |J Dy as follows

) falw) ifxisin Dy
fa(@) = {fg(z) if 2 is in Ds.

Now to be a function, we must also require that for = in Dy () D2 that fi(z) = fa(x). Otherwise our
piecewise defined function will not be single valued. Luckily for us, however, most piecewise defined
functions will have empty intersection.

2.2 More Examples

Example 2 Find the domain and graph the piecewise function

z+2 fx<-—1
flw) = {IQ ifx>-—1

The first thing to note here is that the intersection of the domains is empty. Thus, we are guaranteed
to have a function with domain the union of the domains of its parts: (—oo,—1]J(—1,00) = R. Now,
we just take the graph of the two parts of the function, and we stich them together at the point -1 on
the z-axis. Also, techniqually speaking, we are only graphing a restricted function since graphing on the
domain = R is impossible. Lastly, one should note that even through the two function agree on the point
in which we sew them together, this is not required in general (this will however be required later when
we begin discussing continous functions).
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Figure 3: The graph of the above function from x = -3 to x= 3.



Example 3 Find the domain and graph the function

3z + |z
R

F(x)

Again, the best we can hope to do for the domain is all of R. However, here our domain is not allowed to
contain the point z = 0. Thus, our domain is (—oo,0) [ J(0, 00). The graph of the function is:
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Figure 4: The graph of the above function from x = -10 to x= 10.

2.3 Chapter 1 Section 3

In this section we will see several ways of combing several functions to make new ones. This will facilitate
our ability to graph several special kinds of functions.

2.3.1 Composing Functions

The most fundemental operation in mathematics is that of composition of functions. This is often called
”fog” operation in high school. The operation takes two functions f and g and forms a new function fog
with domain the domain of the function g. The only condition that the functions must satisfy is that the
range of the function g is contained in the domain of the function f. Now we claim that fog is a function,
so to define it, we must define its effect on every point of the domain.

| foglx) = flg(x)) |

Notice since we require that the range of g is contained in the domain of f this definition makes sense.
The process goes as follows: the domain of g feeds the function g a value x. The function g puts out a
value g(z). The function f then takes the value g(x) and outputs a value f(g(x)). If the notation seems
to clumsy for you, you can replace g(x) by x2 and then we have f(x2).

Example 4 Given f(z) = 22 + 1 and g(z) = z + 1 determine (the rule of) the function fog and go f.



fog(z)= flx+1)= (x+1)2+1= w2 2242 (7)
go f(z) = g(z? +1) (22 +1)+1= 2% + 2. (8)

Note that our example shows us a couple of things here. The first is that we do not have fog=go f as
we would expect from other binary operations that we are used to (such as addition and multiplication).

2.3.2 Algebraic Manipulations of Functions

Having discussed composoition of functions, we move onto discuss some algebraic manipulations that one
can do with functions. These are the same manipulations that one can do with real numbers, namely
add and multiply. So, given functions f and g, we wish to define fg and f + g. As with composition of
functions, we need to define these new functions at every point.

(f +9)(z) := f(x) + g(x)
fg(x) == f(x)g(x)

This definition is the obvious definition. It’s so obvious that it’s hard to notice the subtlety of the
definition. The left hand side is a statement, for example, about the function f+g and it is to be evaluated
at the point x. The right hand side actually says what this function does to that point x. Notice, that
before discussing what it means to add fucntions, the right hand side already makes sense while the left
hand side does not.

2.3.3 Specific Examples
Having defined the fundemental notions, we now define some specific examples:

1. Adding a constant function.
2. Mutiplying by a scalar multiple.
3. Shifting the Function.

Example 5
Consider the function f(z) = 22. The graph of this function is the typical parable in the plane.
Graph the functions

1. f(z)+ctorc=1,2,3
2. fl(x+c)forc=-2,-1,1,2
3. cf(z) for c = —-1,1/2,2,5

Now, the effect on the graphs in our example above hold in more general. In the sense that if the
left hand graph depicts the graph of a random function then the right hand graph depicts the graph of a
random function plus a scalar constant.

Notice, that at every point of the domain x the new function is the old function with shifted up by c units.
Similiarly, we can shift the function over by c units:

Here the key is that the graph is shifted to the right by c units. Lastly, we examine the effect of multiplying
by a constant.
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Figure 5: The graph of the above function f(z) = 22 from x = -1 to x= 1
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Ve~

Figure 7: The graph of some function f and the graph of some function f
depicted with the graph of some function f + ¢

Note that every point the original graph is stretched by a factor of ¢. These operations can also be
combined to both move and stretch your graph.

Example 6 Sketch the graph of the equation y = 3 sin(x + 1/2) + 1/4 by graphing a basic function and
then using the rules above.
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Figure 8: The graph of some function f and the graph of some function f
depicted with the graph of some function f o g where g(z) =z — ¢
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Figure 9: The graph of some function f and the graph of some function f
depicted with the graph of some function cf

Let’s start by breaking this function down to its basic parts. Obviously, the most familiar function in
here is the sin function. Its graph should be familiar to you. We next consider sin(x + 1/2). This is the
sin function shifted over to the left by 1/2. The next figure shows that
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Figure 10: Graph of the sine function

We multiply by 3. Then lastly we add in the 1/4.

11
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Figure 11: Graph of the sine function

3 Lecture IV: Section 1.6

In this lecture, we will see a concept that you might not be familiar with, one to one. The central topic
in this lecture will be that of an inverse function. This is something that you should be familiar with. We
will see that a necessary condition for a function to have an inverse is that the function be one-to-one.

3.1 Some definitions
Recall that a function has three parts:

1. A domain
2. A codomain
3. A rule.

Intuitively, an inverse function is a function that you would get by turning around the rule. Let’s state
the formal definition:

Definition: Given a function f a function g is said to be the inverse function of f if

1. For every x in the domain of g we have f(g(z))

=z
2. For every y in the domain of f we have g(f(z)) = y.

We denote the function g by f~! (note that g~ = f).

It is important to realize that not every function has an inverse. For example, the function f(z) =5
has domain R and is clearly a function. However, this function does not have an inverse. You can think
of lack of an inverse function in terms of a T.V. show drama like C.S.I. Very often, they get bits of
information such as the murdor victim was male. While every person is either female or male, there is no
way to determine what person the body belongs to by simply noting their gender. On the other hand, if
one of the investigators determine the dental records or the finger prints of the murder victim (or subject)
it is possible to determine the identity of the unknown person. That is to say that the function from
people to their genders is not invertible but the function from people to fingerprints is.

12



Figure 12: A function and its inverse

3.2 One to One Functions

The difference between the two functions discussed above is that the first function many different people
have the same value (all males get assigned the same value in the codomain) but any given set of fingerprints
belongs to only one person. This leads us to the formal definition of textitone to one.

Definition: A function f is said to be one to one if no two different values in the domain get assigned
to the same value in the codomain. That is, if f(z1) = f(z2) then z1 = 2.
Now, if we insist that a particular functin f is one-to-one with domain D and range R, then it makes

sense to define f~!(y) as the unique value in the domain of f that gets mapped to y. Note, since the
original function f is one to one, f~! is actually a function! Summarizing:

Inverse Function Exists when original function f is one to one If f is one to one with
domain D and range R then f~! exists and has domain R and range D.

Example 2 Which of the following functins are 1 to 1. Which are invertible on their entire domain? If
the function is not invertible on its entire domain, give a domain where it is.

1. f(z) = sin(x)

2. f(z) =23

3. f(x)=2"

From what I have above, these are really the same question.

1. Since sin(0) = sin(m) = 0 we have that the sin function is not one to one on all of R. Thus it is not
invertible on its domain. Notice, that we can restrict the domain to be (7, 7) and the function is one
to one there. Thus, the restricted function is invertible, but the inverse only has domain (—m, ).
This function is of course the arcsin function.

2. The function 2?3 is one to one on its entire domain. This is because the function is increasing that is
if 1 < xy then f(x1) < f(x2). The inverse of 2% is #(1/3).

13
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3. The function 27 is one to one throughout its domain (it is also an increasing function). The inverse
function is log,. This function should be familiar to you. More generally, any exponential function,
is increasing for a > 0 and decreasing for a < 0, so it is one to one for all values of a not equal to
1. The inverse of a” is written log,. Since the range of exponential functions are only the positive
real numbers (0, 00), the domain of the logarithmic functions is only this same set (0, 00). That is to
say something along the lines of Iny(—5) is not defined.

a:C

When testing whether or not a given rule defined on a subset of R defines a function, we used the
vertical line test. When testing whether or not a function has an inverse we will use a parallel arguement
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Figure 13: Graphs of the functions sin(z) 23 and 2*

known as the horizontal line test.

1 2 3

The Horizontal Line Test A function f whose graph is given in the xy — plane is one-to-one
if and only if no horizontal line intersects its graph more than once.

Example 1 Show all the functions below fail the vertical line test and find explicit values of the function

that get mapped to the same point of the range.

1. f(x) = 22
2. g(z) =z +2*
3. h(z) = cos(x)
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Figure 14: Graphs of the functions sin(z), 23, and 2°

14




1. f(=1) = f(1) as a matter of fact since f is even f(—a) = f(a) for every a. This is why it is necessary
to make a choice when defining the square root function.

2. In the graph above it appears as if though f(x) = 0 for two seperate values of x. We find what values
of = the function vanishes by the usual algebraic methods:

g(x) =0 9)
=t4+r=0 (10)
=z(2*+1)=0 (11)
=sz=0o0rz®+1=0 (12)
=z =0o0rz®=-1 (13)
=r=0orz=-1 (14)

(15)

Let’s double check that we are right: g(—1) = (=1)*+1=—-1+1=0 and f(0) =0*+ 0= 0.

3. For our first two examples, we got exaclty two values getting sent from the domain to a single value
in the range. However, for the cosine function, we have infinite number of values getting sent to
any given value in the range. For example, 1/2 = cos(7/3) = cos(w/3 + 2pi) = cos(n/3 + 4 pi) =
...cos(m/3 + 2nm) for every integer n (note that this can’t possibly happen with a polynomail since
after factoring we get only finite number of places where the polynomail can equal zero and by shifting
any other point).

L L L I U L
-100 -50 50 100

<

\\%\\\\;\\L\

Figure 15: The graph of the cos(z) over the domain [—100, 100] plotted along
with the vertical line determined by the equation y = 1/2 (in black)

3.3 Examples of Finding the Inverse of a Given Function

In this section, we give some concrete methods for finding the inverse of a given polynomial function.
While the method doesn’t always work, it’s the best that we can do!

Find the Inverse of a One-to-One function
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1. Write the function f in the form y = f(x).
2. Solve the equation for = in terms of y.

3. To express f~! as a function of & simply replace y by x in the resulting equation.

Note that the third step is purly formal, and it is done to keep with the tradition of whenever an equation
is given which determines a function to have x written for the independent variable and y given for the
dependent variable.

Example 3 Using the procedure above, find an expression for the inverse of the function f(x) =22 +3
(this is exercise 26 on page 75 of your text).

This is straight foward:

Step 1 y =22° + 3. (16)
Step 2 y =22° +3 (17)
=y —3=22" (18)
=(y—3)/2=2> (19)

N Ak g (20)

2
1 s/ —3

Step 3 [~ (x) = 5 (21)
O

3.4 Logs

In this section, we focus on the log function which is a particular example of an inverse function mentioned
in example 1. To state what a log is again, we give a formal definition.

Definition: log,(z) is definined to be the unique number b so that a® = .

The following are some of the basic properties of log functions:
L. log,(xy) = log,(z) + log,(y)
2. log, (2%) = blog,(x)

Since a log function in an inverse function, it is uniquely determined by its inverse. Thus all of the
above properties can be derived from the corresponding properties of exponential functions. For example:

log, (xy) = log, (a'%%«(?)a'*8«)) (22)
- 1Oga(aloga(z)+loga(y)) (23)
= 1Oga (I) + 1Oga(y) (24)

In homework, you will be asked to solve a few equations using logs.
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Figure 16: log,(z) in yellow, logs(z) in blue, and log,(x) in red

Example 4 Solve 3716 = 7 for z.

376 =7 (25)
=x+ 6 = logs(7) (26)
=a = logs(7) — 6 ~ —4.228756251. (27)

4 Lecture V: Section 2.2 and 2.3
4.1 Chaper II Section 2: The Limit of a Function

Limits are the nuts and bolts of calculus. This is the concept that will allow us to define the concepts
of derivatives and integrals later in the course (the concept of the limit will the be subsequently hidden
under the machinary). The concept of a limit was first used by the founding fathers of calculus such
as Newton and Leibnez. However, they did not define ”the limit” precisely. Newton first published his
work displaying the fundemental theorem of calculus in 1666. However, the desire to formulize these ideas
wasn’t presented until 1734. A perscise definition wasn’t given until 1816 by Bernhard Bolzano (and more
publicly by Augustin Louis Cauchy in 1819). This is a 150 year window!! We will take the approach that
if it was good enough for Newton it will be good enough for us. While this approach has disadvantages,
the formal definition of a limit would be without a doubt the hardest single concept would cover in this
class. We will therefore be using an intuitive notiion of what a limit is.

Suppose that you were going to your favorite ice creme place in your home town. However, in the time
that you have been in college, they tore it town and put up a Starbucks. When you got to the Starbucks,
you call your Mom, and she asks ”where were you going”? The answer of course would be to the ice creme
place. In math, the limit is a similiar concept.

4.1.1 Definitions and Basic Idea

Example 1 Consider the function

17



(28)

@
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Figure 17: Graph of f(x)

The informal question we could ask a traveler walking up the curve of the graph heading for x = 1
is "where are you going.” His answer would probably be ”the point (1,1).” Now, he wouldn’t know that
that point is not a point on the graph until he got there. As a matter of fact, he could come arbitrarly
close to it, for example:

b'e f(x)
0 0
0.5 0.25
0.75  0.5625
0.90 0.81
0.95  0.9025
0.99  0.9801

0.999 .998001

Table 1: Several Points on the graph of the function as x gets closer to 1 from
the negative side

Fusturated, the traveler says, I knew the point (1,1) was here before. However, now the point (1,10)
is in this graph. Every indication says that its here, so he tries to come from a different place. This time,
he comes from the positivie side.

Again, coming from this side, the traveler would conclude that he is heading for the point (1,1). In
this example, we write

lim f(z) =1 (29)

r—1
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b'e f(x)

2 4
1.5 2.25
1.25 1.5625
1.05 1.1025
1.01 1.0201

1.001 1.002001
1.0001  1.00020001

Table 2: Several Points on the graph of the function as x gets closer to 1 from
the positive side

Notice, we are saying this because the function comes arbitrarily close to this point even though the
actual value of the function is f(z) = 10. We will later define a function to be continuous when such
things don’t happen. That is when the limit and the actual value agree.

”Definition” 1 We write

lim f(z) =1L (30)

r—a

and say that ”the limit of f(z), as = approaches a equals L” if we can make the values of f(x) arbitrarily
close to L by taking x to be sufficiently close to a (ON BOTH SIDES OF a) but not equal to a (I use
the quotes because this is not a formal definition, what does it mean to be ”arb” close ... for a formal
definition see section 2.4 in the text).

Example 2 Find
lim 22 + x — 2. (31)
€r—

Now, unlike the previous example, this graph doesn’t have any "holes”. Thus, we expect the limit of the
function to actually be the value of the function.
That is

111112x2+x—2:f(2):22+2—2:4. (32)

4.1.2 Noexistance of Limits

Now, this concept so far might seem easy. But, there is always a monkey wrench. Like when we discussed
inverses in the last class, we were able to give a nice definition of an inverse function, but unfortunetly,
the math gods do not care how nice your definition is, because very often the inverse did not exist. Things
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Figure 18: Here f(x) =4 and so does the limit!

here look equally as bleak. A first obvious way that the limit may fail to exist is by simply looking at our
”definition”. In the definition, we require that we get the same value coming from ”both sides”. So, we
can easily concock an example where this doesn’t happen, and so the limit would not exist.

Example 3 Discuss

lim /() (33)
for
5 ifx<?7
flo) = {10 if > 7 (34)

® © 5
Lo b b el 1

=

@

TIT T[T I T [TTTIT[TTTT]
0 25 5.0 75 10.0
x

o

Figure 19: Graph of f(x)
Notice as we approach x = 7 from the left side we expect the value to be 5 but as we approach from

the right side we expect our value to be 10. This means (according to our definition) that our limit does
not exist.
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O

Even worse, sometimes our function doesn’t approach any value. This is the case with the ”big dig”.

Will it be done next week? Next year? Next decade? Anybody who would conjecture a finish date would
be a fool. Similiary, many functions have this property.

Example 4 Discuss

lim 1/ (2 — 1)2

OO T T T T T TTT T TT T TTTT]
0.0 0.5 1.0 15 2.0
X

Figure 20: Graph of f(x)

Let’s begin by putting some values into a table like we did with our first example.

b'e f(x)
0.00 1.0000
0.50 4.0000
0.80 25.000
0.90 100.00
0.95 400.00
0.99 10,000

Table 3: Several Points on the graph of the function as x gets closer to 1 from
the negative side

A similiar thing happens when approaching from the right hand side. Now, since the function does not
come close to any real number our limit does not exist. However, mathematicians like to be a little more
perscise than this. The reason for the fact that the limit not existing is decididly different from the reason
the limit did not exist in the previous example. In this exampe, the function gets larger and larger. For
this reason, we use the notation:

lim f(x) = .

x—1

(36)
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and say ”the limit of f(z), as « approaches a, is infinity”.

Note that this is only a notation! The limit DOES NOT EXIST! This is one the largest errors calculus
students make. The limit can not possibly exist since infinity is not a NUMBER!! However, we still
use the notation above no matter how misleading.

O

4.1.3 One sided limits

In our first example of a non-existant limit (example 3 in the previous section), we ran into difficulty
because we got two different answers coming from two different sides. However, we would still like to say
something about the nature of the function when coming from the two different sides.

”Definition” 2 We write

lim f(z) =Ly (37)
Jlim_ f(z) = Lo (38)

to mean that as the function f comes arbitrarily close to L; when x comes close to a coming from
the negative sides (positive side resp.). Note that in example 3 in the previous section, we have that
lim,_,7— f(z) =5 and lim,_,,+ f(x) = 10.

Some notes:

1. The limit exists if and only if lim,_,,- f(x) and lim,_,,+ f(z) exist and lim,_,,— f(z) = lim,_,,+ f(x)
(they are equal).

2. There exist functions whose one sided limit does not exist from either side and whose limit does not
go off to infinty, namely random functions.

4.1.4 Vertical Asymptote

The Last topic that needs to be briefly touched upon in this section is that of asymptote.

Definition 3 The line x = a is called a vertical asymptote of the curve y = f(x) if any of the following
statements is true:

(39)
(40)
(41)
(42)

where the above are defined in the obvious way based on example 4. We can think of an asymptote as a
vertical line in which the functions graph can approach but never reach.

Example 3 Find the vertical asymptotes of the functions
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flz) = (43)

We notice as = gets close to 3, our denomenator gets close 0. In the mean time the numerator gets close
to 6. This shows us that as = gets to 3, our function f(z) is going off towards oco. More percisely, coming
from the left x — 3 is negative, so the function goes to -co and coming from the right = — 3 is positive, so
the function goes to co.

H
5
trrr el

@

o

?\\\\#\\Al

Figure 21: Graph of f(x)

We notice in the graph above that the function comes closer and closer to the vertical line z = 3 from
both sides, but it never touches it.

Answer The vertical asymptote is the line x = 3. O

4.2 Limit Laws

This section of our book we finally get to see and use some techniques that will be extremly useful
throughout you calculus studies. We will be presented with some real life limits, and we will be given a
tool book of techniques that will be used in hopes of figuring out what the limit is.

4.2.1 The Laws

There are two main limit laws to consider (the book presents 11 but, the other 9 are obvious consequences
of the following 2):

Limit Laws Suppose that lim,_,, f(z) and lim,_,, g(z) exist then:

lim (f(z) + g(x)) = lim f(z) + lim () Sum Law (44)
lim (f(2)g(x)) = lim () lim g(x) Product Law (45)

The sum law implies
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lim (f(x) — g(z)) = lim f(z) — lim g(x) Subtraction (46)

Tr—a r—a Tr—a

and the product gives

lim (cf(x))=c lim f(z) Scalar Multiple Law (47)
lim g((g = lﬁzi:z J;Eg Quotient Law (48)
ilg}l flx)" = (zhg}l fl@)" Power Law (49)

Whenever c¢ is a constant and lim,_., g(x) # 0 in the quotioent rule statement.
These rules along with the following assumption:

lim f(2) = f(a) (50)

for any rational function with a in its domain (a rational funtion is any function that can be written as
the quotient of two polynomials).
4.2.2 Some Examples and Calculations

(Not written out here)

4.2.3 The Squeeze Thm.

So far, besides polynomials and rational functions, we can not solve a tremendous amount of limit problems.
We do not know how to solve problems involving sin, cos, In, or exponetials. We do however, get a little
bit of help from the so called squeeze theorem.

The Squeeze Theorem Given functions f, g, and h with f(z) < g(z) < h(x) for all z, if we have that

lim f(z) = lim h(z) = ¢ then (51)
lim g(z) = a. (52)

While this is a more complicated statement then others we have seen so far in the course, it is however the
only way we can solve more complicated limit problems such as lim,_,gsin(z)/z = 1 which is necessary
to know when trying to figure out the derivative on the sin function.

Example n Show that

lim 22 e(cs(Z) = 0 (53)

z—0

Since the largest cos(z) can ever be is 1 we have that our function is bounded above by 22 e. Similiarly, the
smallest cos(z) can ever be is -1. Thus,our function is bounded below by 22 e~1. Moreover lim,_qz2e~! =
lim,_,0 22 e=0. Thus by the statement of the squeeze theorem we have that lim,_o z> eleos(3) = 0

O

24



Figure 22: Graph of f(x)

5 Lecture VIII: Section 2.7
5.1 The falling ball

When Newton first discussed derivatives, he always took derivatives with respect to time. I will give an
example based on the simple physical phenomena of a rising and falling ball. Plotted with respect to time,
the plot of the ball position is:

Figure 23: Graph of balls motion with respect to time

(It’s important to notice that this graph is a graph with respect to time and not with respect to position!)
Intuitivly, the ball ”stops for a moment” at its highest point. By this I mean, the velocity is zero. Moreover,
by the intermediate value theorem, this statement has to be true (since the ball at one moment is moving
up and at the next its moving down). However, the ball never actually ”stops”. This means, that for any
change in time, there is a change is position. That is:

Ax

— #0. 55

7 (55)
To make the problem something we can get our hands on, we put a coordinate system on the parable. We

can assume that the highest the ball reaches is one unit in one unit of time. This means that our function
is:
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Figure 24: Graph of balls motion with respect to time with a coordinate system
in place

Now everybody who has had elementary school physics knows that velocity is the change in distance of
time. Let’s measure some values of the velocity as the ball gets closer and closer to its zenith (which
occurs at t=1/2). At t=.4 (=2/5) height of the ball is f(.4) = 4(.4)(1 — .4) = .96.And in the next 1/10 of
a second, the ball climbs the additional 0.04 units up. That is we have:

Az 0.04 _ (height units)

=—=——=04—. 57
Vave = A¢ 0.1 (time units) (57)

What does this calculation represent geometrically? To this end, we go off on what might seem a
tangent (hehe) for just a moment. Remember the second appendix that you guys did homework for. In
that section, you reviewed how to make come up with an equation for a (straight line) line simply with the
aid of the knowledge of two points on the line (z1,y1) and (22,y2). The equation used was y = mx + b.
This should be an equation everybody should be familiar with from your early days in highschool. The
m was the slope of the line and was defined as:

Y2 — Y1
Ty — a1

slope of line = m := (58)

and the b is the so-called y-intersept. The place where the line meets the y-axis. This b also only depends
on two points as well, namely:

Y12 — Y271
T2 —T1

b (59)
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The value of b right now is now that important, what is important is that it is that it only depends on
the two points in the plane. Going back to our veloctiy example, we saw that our average velocity over
the interval in question is was found by the exact same value as the slope of the tangent line was found
by. That is:

Vune = {Slope of unique line through (60)

the points (.4, .96) and (.5, 1.0)

10 — 1.0 \
0757 0,975
05— B
— 0.95—]
0.25—] I
. 0.925—
OO T T T T TT T T TITITITTT] IREEEEREEEERERRRRRREE
0.0 0.25 0.5 0.75 1.0 0.35 0.4 0.45 05 0.55
X X

Figure 25: Graph of the function along with the unique line that passes through
the points in question. The graph on the left is plotted on the domain [0,1] and
the right is plotted on the domain[0.35, 0.55]

What happens to the tangent line as we take our z; value closer and closer to the point where we
expect the velocity to become zero, namely x = 1/2? By the equivalence shown above, we can do this
geometrically by simply drawing the unique line through the two points 9 = 1/2 and z7 = 1/2 — dwhere
d becomes smaller and smaller (the so called secant lines)?
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Figure 26: Unique lines through the points (1/2,1) and (x1, f(x1)) as z1 ap-
proaches the point z = 1/2.

We can clearly see that the slope of the tangent line approaches zero as x; approaches 1/2. Statements
like this should be familiar to us from the previous sections on limits. We are saying that:
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lir111/2(Slope of unique line through these points) = 0.
xr1—

And from our discussion above, this is saying that:

fQ/2) = f(z1)

=0.
z—1/2  1/2—1

And of course this is what we expected to be the velocity of the ball at the top of its climb.

5.2 Moving Away From the Example

We now write the above in a more general form, and we make this a definition.
Definition 1 The slope of the Tangent Line at the point a is defined to be

lim A— = lim 7“:82) 7f(x1).
Az—0 Az T2 —T1 Tro — T1

(61)

(62)

(63)

In the next section, we will call this limit the derivative of the function f as the point a. That is, we will
define the slope of the tangent line at a to be the derivative at a. Derivatives make up the first half of
calculus, and we will be studying their properties for the next several months. They are one of the most
useful objects and math and the scope of their applications are nearly unlimitied. Their introduction is
one of the most prominent signs that a new era of mathematics had begun. While the formula above
may look rather complicated and tedious to evaluate, we will develop a mechanical process for evaluating
derivatives that will the evaluation of nearly every function very routine. However, for the next couple
of sections, we have to ”pretend” that we do not know any of this hard core machinary and grind out

derivatives (I mean slopes of tangents lines) by the definition.

Example 1 Use the definition to show that the slope of the tangent line of the function in the previous
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section at z = 1/2 is indeed zero.

L”}mi_i{/(;m - im. 4z (1—x) —z<4>1(/1£2> (1-1/2) (64
- i A )

=, % (66)

= 1, T o)

=l O (68

= (Zlii?;(z 1/1262) (69)

=, @T}f) (70)

=0. (1)

.

5.3 Examples

Believe it or not, these problems are easier when we do not evaluate at a specific point (like we did above
at the point a = 1/2). Let’s start with an easy example.
Example 2 Find the slope of the tangent line of the function:

f(z) =22 (72)

at the point x = a.

f@) = fla) _ . ~2°—a

lim —*——~ = lim Definition (73)
z—a T —a z—a T —a
= lim @=alwta) Factor (74)
z—a T —a
=limz+a Cancel  — a terms (75)
r—a
=2a Evaluate (76)
O

Let’s try a slightly harder example and find the slope at an arbitrary point a.
Example 3 Find the slope of the tangent line of the function:




at the point x = a.

@)= 1) _ @@ +3) -4/ +3)

lim Definition (78)
z—a T —a z—a T —a
4 —4
= lim (a+3)/(w+3)(a+3) =4 +3)/(at3)(@+3) Common den. (79)
r—a Tr—a
= lim (a+3)—d@+3)/(w+3)(a+3) Subtract fraction (80)
r—a r—a
= lim Ha+3)—d(z+3) Group denomenators (81)
z—a (z — a)(z + 3)(a + 3)
) 4(a — x)
=1 C 112’ 82
e —a)(z 1 3)(a+ 3) aneet 22 (82)
—4
= lim ———— Cancel a — = terms 83
AR R =
N Rat. fun. continuous (84)
(a+3)?
O
If you have had calculus before, you may recognize the way above as the derivative of f(z) = m% evaluated

at the point = a. If you haven’t had calculus before, please dismiss this line from the testomony of the
instructor in front of you.

As with the previous homework, the square roots are slightly trickier. And like the last homework,
”un”rationalizing will come to our rescue.
Example 4 Find the slope of the tangent line of the function:

f(z) = V. (85)

at the point = = a.

lim f(@) = fla) = lim VI = Va Definition (86)
T—a r—a r—a xrx—a

= zhg}l (\f; : c\t/)?ﬁf\/f— J\r/a\/)ﬁ) Unrationalize (87)

. r—a . .

= 11613}1 T (/et va) Simplify (88)

= zhg}l ﬁ Cancel (z — a) terms (89)

= ﬁ Evaluate (90)

O

Here’s another similiar problem with just some extra junk floating around.
Example 5 Find the slope of the tangent line of the function:
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fl@)=v3z+2. (91)

at the point = = a.

f@) = fla) _ . V3r+2—+Ba+f2

lim Definition (92)
g—a T —a z—a r—a

= lim (V3r+2- V3wt 2)(V3et 2+ Via+?) Unrationalize (93)

z—a (x —a)(v/3z+2+3a+2)

. 3(x —a) L
=1 Simplif 94
20 3(z — a)(v3z + 2+ v3a 1 2) e oy
1
= xlgb NCTES ERNeT Cancel 3(x — a) terms  (95)
1

= —— Evaluat 96
WerE valuate (96)
O

6 Lecture X: Section 3.1

Today, we are ready to start to use and justify some of the familiar properties of derivatives. The main
properties one has to be able to use are: (for any two functions f and g and constants a and b).

d d d

o (af(z)+bg(z))=a %f ()+0b e (x) Linearity (97)

@) = (@) o)+ @) fa ) Product Rule (98)
d d d .

E(f ou(x)) = %f(u(ac))ﬂu(ac) Chain Rule (99)

These three properties again correspond to the three main operations that we covered in the first
week: addition, multiplication and composition. In today’s lecture, we will cover the first of these three
properties, as well as some special cases of the other two.

6.1 Derivatives of Constants and 2"

The easiest general derivative to take is that of a constant.

The question is essentially ”if I spent all day at one point how fast would I be going”. The obvious answer
to this is 0 miles per hour. That is to say that the derivative of a constant function is zero. To give a
formal justification:
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Figure 27: Graph of a Constant Function

d tant Ax) — tant

E(constant) _ Aligo constant(x + Axa)c constant(x) (100)
constant — constant
= [i 101
Aigo Az (101)
. 0

o Alirgo Az (102)
= 0. (103)

This shows without a shadow of a doubt that the derivative of any constant function is zero.
The next most basic class of functions are the functions of the form f(x) = z™ for real numbers n
(note this includes functions of the form f(x) = \/z in addition to functions of the form f(z) = x2).

da
dz

n—1

The (General) Power Rule For every real number n, we have =2 = nx

Before going into why this is true, let’s look at a few examples to clarify what exactly this is saying.
Example 1 Find the derivative of the functions f(z) =:

1)a® 2z 3)z"/? 4)—. (104)
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1) di 3 =32 Here n = 3 (105)
d _d 12 _ 11 1 .

2) - VI = i v i NG Here n = 1/2 (106)
d K7 T o1 7 _

3) =S = = Here n = 7/2 (107)
d 1 d _5 —3-1 _ 43 _

4) e A 3x =-3x "= s Here n = -3 (108)

O

These problems are extremly easy to do, much easier than using the definition. Suprisingly, the most
common type of error in these sorts of errors is simple arithmatic errors. For example, people often take
-3-1 = -2 or something similiar. The general power rule above is a consequence of the product and chain
rules in general. However, when we restrict ourselves to positive integers, we can prove a weaker form of
the theorem (the book calls it in this form as the power rule with the word general excluded). It is an
amazing fact that the slope of function comes out to such a simple form. Often, geometrical constructions
(for example, finding the slope of a general curve at every point) have results that are quite exotic. The
ultimate example being the number .

Validification of the power rule for non negative integers n.

n_ o (@A)t — 2"
dz” _AlachEO Az (109)
n n—1 A Axn—1 Ax™) —

=Alim (" +nx x+--nxAz" 4+ Ag™) (110)

r—0 Ax

nflA A n—1 Ax™
= Jlim (na"" Az + A” 2"+ Aah) (111)
Tr— X

=Alim (nz" '+ nzAz"? 4+ Az"h) (112)
=nz" L (113)
O

Again, it’s important to realize this does not say anything about the functions f(z) = 1/ or any function
where n is not a nonnegative integer.

6.2 Constant Multiple and Sum Rule

The first rule that I expressed at the beginning of this section can less precisely expressed in terms of two
seperate rules.

1. L(cf(x)) = ¢ f(x) Constant Multiple Rule
2. L(f(x)+g(z)) = Lf(z) + Lg(x)) Sum Rule

The justification for these two laws again follows right from the definition of the derivative. We first
let g(z) = ¢ f(x) for some constant c.
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Not much harder is the sum law. Here, we let g(z) = f1(z) + f2(x).
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Using the properties developed thus far in this section, we now have the ability to take the derivative

of any polynomial.

Example 2 Find the derivative of the function f(z) = 2® + a:
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Sum Property

Two Applications of Power Rule
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6.3 Derivatives of Exponential Functions

The easiest function to take the derivative of is the function e®.

—e® =¢". (129)
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