# Calculus I lecture notes 

Mark O'Brien
August 25, 2008

08-25-08


Figure 1: The graph of the function $\frac{\sin 2 x}{x}$.


Figure 2: The graph of the function $\sin \frac{1}{x}$.

## 09-03-08

Here we give an example where we combine a bunch of random continuous functions together using the rules on pages $86-88$ which preserve continuity to get a continuous function.

$$
\frac{\mathrm{e}^{\sin \left(x^{2}\right)+\cos (x)^{3}}}{1+x^{2}}+x^{-\mathrm{e}^{x}}
$$



Figure 3: The graph of the function in the caption between 3 and 10.
Assigned homework from page 90: 2,5 (prelim section!), 2,3,8,12,22,37,80.
09-08-08


Figure 4: Comparison of the graphs $\sin x$ and $x$.

## 09-12-08

The real root of the polynomial $x^{3}+2 x-1$ is exactly equal to

$$
\frac{1}{6} \sqrt[3]{108+12 \sqrt{177}}-\frac{4}{\sqrt[3]{108+12 \sqrt{177}}}
$$

This number is approximately 0.4533976522 . In class we used the intermediate value theorem (and no calculator) to show that the root was between $7 / 16=0.4375$ and $15 / 32=0.46875$.

09-15-08
The following graph plots the $\sin (x)$ and $x$.


Figure 5: Comparison of the graphs $\sin x$ and $x$.
A note on homework: it seems that the homework for this section has not been posted by the course organizer. He has told me that it will be posted before the end of $9 / 16 / 08$.

## 09-19-08

The following graph plots $a^{x}$ for $a=1,2,3,4,5$, and 6 .


Figure 6: Graphs of several exponential functions

## 09-19-08

The homework due 10-6-08 is $3.61,2,3,4,10,12,14,16,18$ and $3.79,10,16,17,19,41,43,68$.

## 09-30-08

The graph of $\ln (x)$.


Figure 7: $\ln (x)$ plotted from 1 to 10000

## 11-4-08

Notice how the graph goes through $e$ as $x$ goes to 0 .


Figure 8: $(1+x)^{1 / x}$ plotted from $-1 / 10$ to $1 / 10,-1 / 100$ to $1 / 100$ and $-1 / 1000$ to $1 / 1000$ resp.

## 11-7-08

Newton's Method in pictures through 3 iterates. The red graph is the actual graph.


Figure 9: Newton's Method Used to Approx the real root of $x^{3}+x+1$.

