2C1: Further Maths, Handout 1

Niels R. Walet, September 29, 2002

1 ODEs: 1st order

- ODE $d y / d x=f(x)$ solved by direct integration $\frac{d y}{d x}=f(x) \leadsto y(x)=\int f(x) d x$
- $d y / d x=h(y)$ solved by inversion $\frac{d y}{d x}=h(y) \leadsto x(y)=\int 1 / h(y) d y$
- $\frac{d y}{d x}=f(x) h(y)$ solved by separation of variables, $\frac{d y}{d x}=f(x) h(y) \leadsto \int \frac{1}{h(y)} d y=$ $\int f(x) d x$
- Linear: $a(x) d y / d x+b(x) y=f(x)$ solved by finding integrating factor $p(x)=$ $\int b(x) / a(x) d x: y(x)=e^{-p(x)} \int \frac{f(x)}{a(x)} e^{p(x)} d x$

2 Examples

Question: Find the solution of $y^{\prime}=y^{2}+1$ satisfying the condition $y(0)=1$.
Question: Find the general solution of $\left(y^{\prime}\right)^{2}=1-y^{2}$.
Question: Solve $x y^{\prime}+x y \ln (x)=e^{-(x-1) \ln (x)}$
Question: Solve $y^{\prime}+\frac{y(x+y)}{x(x-y)}=1$

3 ODEs: 2nd order

- Linear 2 nd order equation with constant coefficients: $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=f(x)$ Homogeneous if $f(x)=0$; inhomogenous otherwise
- simplest case: $\frac{d^{2} y}{d t^{2}}=f(t) \leadsto y(t)=\int\left(\int^{t} f\left(t^{\prime}\right) d t^{\prime}\right) d t$.
- General homogeneous: substitute $y=e^{\lambda x}: a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0 \leadsto a \lambda^{2}+b \lambda+c=$ 0 .
- Driven (i.e., inhomogeneous): Solve homogeneous problem first, then add a particular solution to that.

4 Examples

Question: The DE

$$
\frac{d^{2} x}{d t^{2}}=g e^{-k t}
$$

(g acceleration due to gravity, k a positive constant) describes the position of a falling parachutist. "Classify" this equation and provide the general solution. Now assume that the initial position is h and velocity is zero.
Question: In a medium the z-component of the electric field varies with the distance x from the boundary as $\frac{d^{2} E_{z}}{d x^{2}}+\frac{\Omega^{2}}{c^{2}} \frac{d E_{z}}{d x}-\mu^{2} E_{z}=0$. Solve this equation, and determine the parameter ranges where this solution has a different character.
Question: Find the general solution to the $\mathrm{DE}\left(\omega_{0}^{2} \neq \Omega^{2}\right) \frac{d^{2} y}{d t^{2}}+\omega_{0}^{2} y=A \cos (\Omega t)$

5 What have we learned?

- What is a DE?
- Why do we concentrate on linear DE?
- What is the order of an ODE?
- What is the difference between homogenous and inhomogeneous equations in mathematical and physical terms?
- Why do integration constants appear? How many?

