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1 Fourier Series

A Fourier series is a series of the form Consider the series

f(x) =
a0

2
+

∑

n=1

[an cos
(nπx

L

)

+ bn sin
(nπx

L

)

] − L ≤ x ≤ L.

1.1 Periodic functions

A function is called periodic with period p if f(x + p) = f(x), for all x. The smallest
positive value of p for which f is periodic is called the (primitive) period of f .

1.2 Orthogonality and normalisation

The basic functions in a Fourier series are

{1, cos
(nπx

L

)

, sin
(nπx

L

)

},

We find that
∫ L

−L
1 · 1dx = 2L,

∫ L

−L
1 · cos

(nπx
L

)

dx = 0,

∫ L

−L
1 · sin

(nπx
L

)

dx = 0,

∫ L

−L
cos

(mπx
L

)

· cos
(nπx

L

)

dx = 1
2

∫ L

−L
cos

(

(m + n)πx
L

)

+ cos
(

(m− n)πx
L

)

dx

=
{

0 n 6= m
L n = m

∫ L

−L
sin

(mπx
L

)

· sin
(nπx

L

)

dx = 1
2

∫ L

−L
− cos

(

(m + n)πx
L

)

+ cos
(

(m− n)πx
L

)

dx

=
{

0 n 6= m
L n = m

∫ L

−L
cos

(mπx
L

)

· sin
(nπx

L

)

dx = 1
2

∫ L

−L
sin

(

(m + n)πx
L

)

+ sin
(

(m− n)πx
L

)

dx

= 0.

These functions orthogonal! The general definition of inner product is

(f, g) =
∫ b

a
w(x)f(x)g(x)dx.

If this is zero we say that the functions f and g are orthogonal on the interval [a, b]
with weight functions w.

The norm is defined as the square root of the inner-product of a function with itself

||f || =

√

∫ b

a
w(x)f(x)2dx.

If we define a normalised form of f (like a unit vector) as f/||f ||, we have

||(f/||f ||)|| =

√

∫ b
a w(x)f(x)2dx

||f ||2
=

√

∫ b
a w(x)f(x)2dx

||f ||
= 1.
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1.3 When is it a Fourier series?

Assume that the periodic function f has a Fourier series representation, Use the
orthogonality of the trigonometric functions to find that

∫ L

−L
f(x) · 1dx = La0,

∫ L

−L
f(x) · cos

(nπx
L

)

dx = Lan,

∫ L

−L
f(x) · sin

(nπx
L

)

dx = Lbn.

This defines the Fourier coefficients for a given f .
An important property of Fourier series is given in Parseval’s lemma:

∫ L

−L
f(x)2dx =

La2
0

2
+ L

∞
∑

n=1

(a2
n + b2

n).

Square wave

f(x) =
{

−3 if − 5 + 10n < x < 10n
3 if 10n < x < 5 + 10n ,

where n is an integer. L = 5.

a0 =
1
5

∫ 0

−5
−3dx +

1
5

∫ 5

0
3dx = 0

an =
1
5

∫ 0

−5
−3 cos

(nπx
5

)

+
1
5

∫ 5

0
3 cos

(nπx
5

)

= 0

bn =
1
5

∫ 0

−5
−3 sin

(nπx
5

)

+
1
5

∫ 5

0
3 sin

(nπx
5

)

=
3

nπ
cos

(nπx
5

)

∣

∣

∣

∣

0

−5
− 3

nπ
cos

(nπx
5

)

∣

∣

∣

∣

5

0

=
6

nπ
[1− cos(nπ)] =

12
nπ

δn,odd

And thus (n = 2m + 1)

f(x) =
12
π

∑

m=0

1
2m + 1

sin
(

(2m + 1)πx
5

)

.

Question: What happens if we apply Parseval’s theorem to this series?
Answer: We find

∫ 5

−5
9dx = 5

144
π2

∞
∑

m=0

(

1
2m + 1

)2

Which can be used to show that
∞
∑

m=0

(

1
2m + 1

)2

=
π2

8
.

1.4 Fourier series for even and odd functions

A function is called even if f(−x) = f(x), e.g. cos(x).
A function is called odd if f(−x) = −f(x), e.g. sin(x).

1. The sum of two even (odd) functions is even (odd).

2. The product of two even or two odd functions is even.

3. The product of an even and an odd function is odd.

Question: Which of the following functions is even or odd?
a) sin(2x), b) sin(x) cos(x), c) tan(x), d) x2, e) x3, f) |x|

Answer: even: d, f; odd a, b, c, e.

Now if we look at the infinite Fourier series, the Fourier cosine series

f(x) =
a0

2
+

∞
∑

n=1

an cos
nπ
L

x

describes an even function (why?), and the Fourier sine series

f(x) =
∞
∑

n=1

bn sin
nπ
L

x

an odd function. These play an especially important rôle for functions defined on half
the Fourier interval, i.e., on [0, L] instead of [−L,L]. There are three possible ways
to define a Fourier series in this way:

1. Continue f as an even function.
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Figure 1: A sketch of the possible ways to continue f beyond its definition region
for 0 < x < L. From left to right as even function, odd function or assuming no
symmetry at all.

2. Continue f as an odd function.

3. Neither of the two above.

A Fourier cosine series has df/dx = 0 at x = 0, and the Fourier sine series has
f(x = 0) = 0. Let me check the first of these statements:

d
dx

[

a0

2
+

∞
∑

n=1

an cos
nπ
L

x

]

= −π
L

∞
∑

n=1

nan sin
nπ
L

x = 0 at x = 0.

As an example look at the function f(x) = 1−x, 0 ≤ x ≤ 1, with an even continuation
on the interval [−1, 1]. We find

a0 =
2
1

∫ 1

0
(1− x)dx = 1

an = 2
∫ 1

0
(1− x) cos nπxdx

=
{

2
nπ

sin nπx− 2
n2π2 [cosnπx + nπx sin nπx]

}∣

∣

∣

∣

1

0

=
{

0 if n even
4

n2π2 if n odd

So

f(x) = 1
2 +

4
π2

∞
∑

m=0

1
(2m + 1)2

cos(2m + 1)πx.

1.5 Convergence of Fourier series

1. A square wave, f(x) = 1 for −π < x < 0; f(x) = −1 for 0 < x < π.
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Figure 2: The square and triangular waves on their fundamental domain.

2. a triangular wave, g(x) = π/2 + x for −π < x < 0; g(x) = π/2− x for 0 < x < π.

Note that f is the derivative of g.
It is not very hard to generate the relevant Fourier series,

f(x) = − 4
π

∞
∑

m=0

1
2m + 1

sin(2m + 1)x,

g(x) =
4
π

∞
∑

m=0

1
(2m + 1)2

cos(2m + 1)x.

Let us compare the partial sums, where we let the sum in the Fourier series run from
zero to M i.o. ∞.

The convergence for g is uneventful, and after a few steps it is hard to see a difference
between the partial sums, as well as between the partial sums and g. For f , the square
wave, we see a surprising result: Even though the approximation gets better and better
in the flat middle, there is a finite (and constant!) overshoot near the singularity. The
area of this overshoot becomes smaller and smaller as we increase M . This is called
the Gibbs phenomenon (after its discoverer). It can be shown that for any function
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Figure 3: The convergence of the Fourier series for the square (left) and triangular
wave (right). the number M is the order of the highest Fourier component.

with a discontinuity such an effect is present, and that the size of the overshoot only
depends on the size of the discontinuity! Let me show a final, slightly more interesting
version of this picture.

Figure 4: A three-dimensional representation of the Gibbs phenomemnon for the
square wave. The axis orthogonal to the paper labels the number of Fourier compo-
nents.


