
2C1: P.D.E., Handout 5
Niels R. Walet, October 28, 2002

Niels.Walet@umist.ac.uk, http://walet.phy.umist.ac.uk/2C1/

1 Cookbook for separation of variables

• Take care that the boundaries are naturally described in your variables (i.e., at
the boundary one of the coordinates is constant)!

• Write the unknown function as a product of functions in each variable.

• Divide the differential equation by the product of functions, so as to have a ratio
of functions in one variable equal to a ratio of functions in the other variable(s).

• Since these two are equal they must both equal to a constant.

• Separate the boundary and initial conditions. Those that are zero can be re-
expressed as conditions on one of the unknown functions.

• Solve the equation for that function where most boundary information is known.

• This determines a (discrete) set of separation parameters.

• Solve the remaining equation for each allowed value of the separation parameter.

• Use the superposition principle (which holds for linear homogeneous equations)
to add all solutions, each multiplied by a constant.

• Determine the value of these constants from the remaining boundary and initial
conditions.

This is best illustrated with an example:

2 parabolic equation*

Heat equation in 1 space dimension.

∂u
∂t

= k
∂2u
∂x2 , 0 < x < L, t > 0.

BC’s
u(0, t) = 0, u(L, t) = 0, t > 0

IC
u(x, 0) = x, 0 < x < L.

Use separation of variables:
u(x, t) = X(x)T (t).

This leads to the differential equation

X(x)T ′(t) = kX ′′(x)T (t).

We find, by dividing both sides by XT , that

1
k

T ′(t)
T (t)

=
X”(k)
X(k)

.

Thus the left-hand side, a function of t, equals a function of x on the right-hand side.
This is not possible unless both sides are independent of x and t, i.e. constant. Let
us call this constant −λ.
Question: What happens if X(x)T (t) is zero at some point?
Answer: Nothing. We can still obtain the same answer, even though we can’t divide.

The boundary conditions also separate (only for zero r.h.s.!!!)

u(0, t) = 0 → X(0)T (t) = 0 → X(0) = 0

u(L, t) = 0 → X(L)T (t) = 0 → X(0) = 0

The initial condition will not separate,

u(x, 0) = X(x)T (0) = x,

can not be solve for X(x) or T (0) since the r.h.s. is not zero.
We obtain two differential equations

T ′(t) = −λkT (t), X”(x) = −λX(x).

We now have to distinguish the three cases λ > 0, λ = 0, λ < 0.
λ > 0

Write α2 = λ. The solution to the equation for X is

X(x) = A cos αx + B sin αx.

X(0) = 0 gives A · 1 + B · 0 = 0, or A = 0. Using X(L) = 0 we find that

B sin αL = 0

which has a “nontrivial” solution only when αL = nπ. This gives λn = n2π2

L2 .
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λ = 0
We find that X = A + Bx. The boundary conditions give A = B = 0, so only trivial
(zero) solution.

λ < 0
We write λ = −α2. The solution for X is now in term of exponential, or hyperbolic
functions,

X(x) = A cosh x + B sinh x.

The boundary condition at x = 0 gives A = 0, and the one at x = L gives B = 0.
Only trivial solution.

We have thus only found a solution for λ > 0. Solving the T equation, we find
T = exp(−λkT ). Combining the solutions, we have

un(x, t) = exp
(

−k
n2π2

L2 t
)

sin
nπ
L

x.

The equation we started from was linear and homogeneous, so we can superimpose
the solutions for different values of n,

u(x, t) =
∞
∑

n=1

cn exp
(

−k
n2π2

L2 t
)

sin
nπ
L

x.

This can be thought of as a Fourier sine series with time-dependent Fourier coefficients.
The initial condition specifies the coefficients cn, which are the Fourier coefficients at
time t = 0. Thus

cn =
2
L

∫ L

0
x sin

nπx
L

dx

= −2L
nπ

(−1)n = (−1)n+1 2L
nπ

The final solution to the PDE + BC’s + IC is

u(x, t) =
∞
∑

n=1

(−1)n+1 2L
nπ

exp
(

−k
n2π2

L2 t
)

sin
nπ
L

x.

This solution is transient: if time goes to infinity, it goes to zero.

3 hyperbolic equation*

As an example of a hyperbolic equation study the wave equation. One of the systems
it can describe is a transmission line for high frequency signals, 40m long.

∂2V
∂x2 = LC

︸︷︷︸

imp×capac

∂2V
∂t2

∂V
∂x

(0, t) =
∂V
∂x

(40, t) = 0

V (x, 0) = f(x)
∂V
∂t

(x, 0) = 0

4 Laplace’s equation*

Solve Laplace’s equation
∂2u
∂x2 +

∂2u
∂y2 = 0,

an example of an elliptic equation. Look at a square plate of size a × b, and impose
the boundary conditions

u(x, 0) = 0,

u(a, y) = 0,

u(x, b) = x,

u(0, y) = 0

(This choice is made so as to be able to evaluate Fourier series easily. It is not very
realistic!)

5 More complex initial/boundary conditions

It is not always possible on separation of variables to separate initial or boundary
conditions in a condition on one of the two functions. We can either map the problem
into simpler ones by replacing using superposition of boundary conditions, or we can
carry around additional integration constants.

Let me give an example of this procedure. Consider a vibrating string attached on
two air bearings, along rods 4m apart. Now we are asked to find the displacement
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x=ax=0

Figure 1: A string connected to air bearings.

if the initial displacement is one meter and the initial velocity is x/t0 m/s. The
differential equation and its boundary conditions are easily written down,

∂2u
∂x2 =

1
c2

∂2u
∂t2

∂u
∂x

(0, t) =
∂u
∂x

(4, t) + 0, if t > 0

u(x, 0) = 1
∂u
∂t

(x, 0) = x/t0

Question: What happens if I add two solutions v and w of the differential equation
that satisfy the same BC’s as above but different IC’s,

v(x, 0) = 0,
∂v
∂t

(x, 0) = x/t0,

w(x, 0) = 1,
∂w
∂t

(x, 0) = 0?

Answer: u=v + w, we can add the BC’s.
If we separate variables, u(x, t) = X(x)T (t), we find that we obtain simple boundary

conditions for X(x),
X ′(0) = X ′(4) = 0,

but we have no such luck for T (t). As before we solve the eigenvalue equation for X,
and find solutions λn = n2π2

16 , n = 0, 1, ..., and Xn(x) = cos(nπ
4 x). Since we have no

boundary conditions for T (t), we have to take the full solution,

T0(t) = A0 + B0t,

Tn(t) = An cos
nπ
4

ct + Bn sin
nπ
4

ct,

and thus

u(x, t) = 1
2 (A0 + B0t) +

∞
∑

n=1

(

An cos
nπ
4

ct + Bn sin
nπ
4

ct
)

cos
nπ
4

x.

Now impose the initial conditions:

u(x, 0) = 1 = 1
2A0 +

∞
∑

n=1

An cos
nπ
4

x.

Which implies A0 = 2, An = 0, n > 0. And

∂u
∂t

(x, 0) = x/t0 = 1
2B0 +

∞
∑

n=1

nπc
4

.Bn cos
nπ
4

x

This is the sine Fourier series of x, which we have encountered before, and leads to
the coefficients B0 = 4 and Bn = − 64

n3π3c if n is odd and zero otherwise. So finally

u(x, t) = (1 + 2t)− 64
π3

∑

n odd

1
n3 sin

(

nπct
4

)

cos
(nπx

4

)

.

We could also have treated the problem differently, by finding two solutions to the
wave equation, one with the initial conditions u(x, 0) = 1, ∂u

∂t (x, 0) = 0 and the other
with u(x, 0) = 0, ∂u

∂t (x, 0) = x. This is a very general technique (and maybe overkill
for the present problem), but allows for solutions with only one set of integration
constants.

6 Inhomogeneous equations

Consider a rod of length 2m, laterally insulated (heat only flows inside the rod).
Initially the temperature u is

4
π2k

sin
(πx

2

)

+ 500 K.

(The weird choice are so as to have an easy solution!) The left and right ends are
both attached to a thermostat, and the temperature at the left side is fixed at a
temperature of 500 K and the right end at 100 K. There is also a heater attached to
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the rod that adds a constant heat of sin
(πx

2

)

to the rod. The differential equation
describing this is inhomogeneous:

∂u
∂t

= k
∂2u
∂x2 + sin

(πx
2

)

,

u(0, t) = 500,

u(π, t) = 100,

u(x, 0) =
1
k

sin
(πx

2

)

+ 500.

Since the inhomogeneity is time-independent we write

u(x, t) = v(x, t) + h(x),

where h will be determined so as to make v satisfy a homogeneous equation. Substi-
tuting this form, we find

∂v
∂t

= k
∂2v
∂x2 + kh′′ + sin

(πx
2

)

.

To make the equation for v homogeneous we require

h′′(x) = −1
k

sin
(πx

2

)

,

which has the solution

h(x) = C1x + C2 +
4

kπ2 sin
(πx

2

)

.

At the same time we let h carry the boundary conditions, h(0) = 500, h(2) = 100,
and thus

h(x) = −200x + 500 +
4

kπ2 sin
(πx

2

)

.

The function v satisfies

∂v
∂t

= k
∂2v
∂x2 ,

v(0, t) = v(π, t) = 0,

v(x, 0) = u(x, 0)− h(x) = 200x.

This is a problem of a type that we have seen before. By separation of variables we
find

v(x, t) =
∞
∑

n=1

bn exp(−k(nπ/2)2t) sin nπx.

The initial condition gives
∞
∑

n=1

bn sin nx =
400
π

x.

from which we find
bn = (−1)n+1 800

nπ
.

And thus

u(x, t) = −200x + 500
4

kπ2 sin
(πx

2

)

. +
800
π

∞
∑

n=1

(−1)n

n
sin

(πnx
2

)

e−kn2t. (1)

Note: as t →∞, u(x, t) → − 400
π x+500+ sin x

k . As can be seen in Fig. 2 this approach
is quite rapid – we have chosen k = 1/100 in that figure, and summed over the first
100 solutions.
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Figure 2: Time dependence of the solution to the inhomogeneous equation (1)


