2C1: P.D.E., Handout 7

Niels R. Walet, November 12, 2002
Niels.Walet@umist.ac.uk, http://walet.phy.umist.ac.uk/2C1/
Series solutions of D.E. (Frobenius' method)

1 A simple example

Look at differential equation,

$$
y^{\prime \prime}(t)=t y(t)
$$

with initial conditions $y(0)=a, y^{\prime}(0)=b$. Let us assume that there is a solution that is analytical near $t=0$. This means that near $t=0$ the function has a Taylor's series

$$
y(t)=c_{0}+c_{1} t+\ldots=\sum_{k=0}^{\infty} c_{k} t^{k} .
$$

We find

$$
\begin{aligned}
y^{\prime}(t) & =c_{1}+2 c_{2} t+\ldots=\sum_{k=1}^{\infty} k c_{k} t^{k-1} \\
y^{\prime \prime}(t) & =2 c_{2}+3 \cdot 2 t+\ldots=\sum_{k=2}^{\infty} k(k-1) c_{k} t^{k-1} \\
t y(t) & =c_{0} t+c_{1} t^{2}+\ldots=\sum_{k=0}^{\infty} c_{k} t^{k+1} \\
y^{\prime \prime}-t y & =\left[2 c_{2}+3 \cdot 2 t+\ldots\right]-\left[c_{0} t+c_{1} t^{2}+\ldots\right] \\
& =2 c_{2}+\left(3 \cdot 2 c_{3}-c_{0}\right) t+\ldots \\
& =2 c_{2}+\sum_{k=3}^{\infty}\left\{k(k-1) c_{k}-c_{k-3}\right\} t^{k-2}
\end{aligned}
$$

Here we have collected terms of equal power of t. The reason is simple. We are requiring a power series to equal 0 . The only way that can work is if each power of x in the powerseries has zero coefficient. (Compare a finite polynomial....) We thus find

$$
c_{2}=0, \quad k(k-1) c_{k}=c_{k-3}
$$

The last relation is called a recurrence of recursion relation, which we can use to bootstrap from a given value, in this case c_{0} and c_{1}. Once we know these two numbers,
we can determine c_{3}, c_{4} and c_{5} :

$$
c_{3}=\frac{1}{6} c_{0}, \quad c_{4}=\frac{1}{12} c_{1}, \quad c_{5}=\frac{1}{20} c_{2}=0
$$

These in turn can be used to determine c_{6}, c_{7}, c_{8}, etc. It is not too hard to find an explicit expression for the c 's

$$
\begin{aligned}
c_{3 m} & =\frac{3 m-2}{(3 m)(3 m-1)(3 m-2)} c_{3(m-1)} \\
& =\frac{3 m-2}{(3 m)(3 m-1)(3 m-2)} \frac{3 m-5}{(3 m-3)(3 m-4)(3 m-5)} c_{3(m-1)} \\
& =\frac{(3 m-2)(3 m-5) \ldots 1}{(3 m)!} c_{0}, \\
c_{3 m+1} & =\frac{3 m-1}{(3 m+1)(3 m)(3 m-1)} c_{3(m-1)+1} \\
& =\frac{3 m-1}{(3 m+1)(3 m)(3 m-1)} \frac{3 m-4}{(3 m-2)(3 m-3)(3 m-4)} c_{3(m-2)+1} \\
& =\frac{(3 m-2)(3 m-5) \ldots 2}{(3 m+1)!} c_{1}, \\
c_{3 m+1} & =0
\end{aligned}
$$

The general solution is thus

$$
y(t)=a\left[1+\sum_{m=1}^{\infty} c_{3 m} t^{3 m}\right]+b\left[1+\sum_{m=1}^{\infty} c_{3 m+1} t^{3 m+1}\right] .
$$

The technique sketched here can be proven to work for any differential equation

$$
y^{\prime \prime}(t)+p(t) y^{\prime}(t)+q(t) y(t)=f(t)
$$

provided that $p(t), q(t)$ and $f(t)$ are analytic at $t=0$. Thus if p, q and f have a power series expansion, so has y.

2 Singular points

Most equations of interest are of a form where p and/or q are singular at the point t_{0} (usually $t_{0}=0$). Any point t_{0} where $p(t)$ and $q(t)$ are singular is called a singular
point. Of most interest are a special class of singular points regular singular points, where the differential equation can be given as

$$
\left(t-t_{0}\right)^{2} y^{\prime \prime}(t)+\left(t-t_{0}\right) \alpha(t) y^{\prime}(t)+\beta(t) y(t)=0
$$

with α and β analytic at $t=t_{0}$. Let us assume that this point is $t_{0}=0$. Frobenius' method consists of the following technique: In the equation

$$
x^{2} y^{\prime \prime}(x)+x \alpha(x) y^{\prime}(x)+\beta(x) y(x)=0,
$$

we assume a generalised series solution of the form

$$
y(x)=x^{\gamma} \sum_{n=0}^{\infty} c_{n} x^{k}
$$

Equating powers of x we find

$$
\gamma(\gamma-1) c_{0} x^{\gamma}+\alpha_{0} \gamma c_{0} x^{\gamma}+\beta_{0} c_{0} x^{\gamma}=0
$$

etc. The equation for the lowest power of x can be rewritten as

$$
\gamma(\gamma-1)+\alpha_{0} \gamma+\beta_{0}=0
$$

This is called the indicial equation. It is a quadratic equation in γ, that usually has two (complex) roots. Let me call these γ_{1}, γ_{2}. If $\gamma_{1}-\gamma_{2}$ is not integer one can prove that the two series solutions for y with these two values of γ are independent solutions.

3 Special cases

For the two special cases I will just give the solution (too much work to do it in all generality)

3.1 Two equal roots

If the indicial equation has two equal roots, $\gamma_{1}=\gamma_{2}$, we have one solution of the form

$$
y_{1}(t)=t^{\gamma_{1}} \sum_{n=0}^{\infty} c_{n} t^{n}
$$

The other solution takes the form

$$
y_{2}(t)=y_{1}(t) \ln t+t^{\gamma_{1}+1} \sum_{n=0}^{\infty} d_{n} t^{n} .
$$

Notice that this last solution is always singular at $t=0$, whatever the value of γ_{1} !

3.2 Two roots differing by an integer

If the indicial equation that differ by an integer, $\gamma_{1}-\gamma_{2}=n>0$, we have one solution of the form

$$
y_{1}(t)=t^{\gamma_{1}} \sum_{n=0}^{\infty} c_{n} t^{n}
$$

The other solution takes the form

$$
y_{2}(t)=a y_{1}(t) \ln t+t^{\gamma_{2}} \sum_{n=0}^{\infty} d_{n} t^{n} .
$$

The constant a is determined by substitution, and in a few relevant cases is even 0 , so that the solutions can be of the generalised series form.

