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Series solutions of D.E. (Frobenius’ method)

1 A simple example

Look at differential equation,
y′′(t) = t y(t),

with initial conditions y(0) = a, y′(0) = b. Let us assume that there is a solution that
is analytical near t = 0. This means that near t = 0 the function has a Taylor’s series

y(t) = c0 + c1t + . . . =
∞
∑

k=0

cktk.

We find

y′(t) = c1 + 2c2t + . . . =
∞
∑

k=1

kcktk−1

y′′(t) = 2c2 + 3 · 2t + . . . =
∞
∑

k=2

k(k − 1)cktk−1

ty(t) = c0t + c1t2 + . . . =
∞
∑

k=0

cktk+1

y′′ − ty = [2c2 + 3 · 2t + . . .]− [c0t + c1t2 + . . .]

= 2c2 + (3 · 2c3 − c0)t + . . .

= 2c2 +
∞
∑

k=3

{k(k − 1)ck − ck−3} tk−2.

Here we have collected terms of equal power of t. The reason is simple. We are
requiring a power series to equal 0. The only way that can work is if each power of
x in the powerseries has zero coefficient. (Compare a finite polynomial....) We thus
find

c2 = 0, k(k − 1)ck = ck−3.

The last relation is called a recurrence of recursion relation, which we can use to
bootstrap from a given value, in this case c0 and c1. Once we know these two numbers,

we can determine c3,c4 and c5:

c3 =
1
6
c0, c4 =

1
12

c1, c5 =
1
20

c2 = 0.

These in turn can be used to determine c6, c7, c8, etc. It is not too hard to find an
explicit expression for the c’s

c3m =
3m− 2

(3m)(3m− 1)(3m− 2)
c3(m−1)

=
3m− 2

(3m)(3m− 1)(3m− 2)
3m− 5

(3m− 3)(3m− 4)(3m− 5)
c3(m−1)

=
(3m− 2)(3m− 5) . . . 1

(3m)!
c0,

c3m+1 =
3m− 1

(3m + 1)(3m)(3m− 1)
c3(m−1)+1

=
3m− 1

(3m + 1)(3m)(3m− 1)
3m− 4

(3m− 2)(3m− 3)(3m− 4)
c3(m−2)+1

=
(3m− 2)(3m− 5) . . . 2

(3m + 1)!
c1,

c3m+1 = 0.

The general solution is thus

y(t) = a

[

1 +
∞
∑

m=1

c3mt3m

]

+ b

[

1 +
∞
∑

m=1

c3m+1t3m+1

]

.

The technique sketched here can be proven to work for any differential equation

y′′(t) + p(t)y′(t) + q(t)y(t) = f(t)

provided that p(t), q(t) and f(t) are analytic at t = 0. Thus if p, q and f have a
power series expansion, so has y.

2 Singular points

Most equations of interest are of a form where p and/or q are singular at the point
t0 (usually t0 = 0). Any point t0 where p(t) and q(t) are singular is called a singular
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point. Of most interest are a special class of singular points regular singular points,
where the differential equation can be given as

(t− t0)2y′′(t) + (t− t0)α(t)y′(t) + β(t)y(t) = 0,

with α and β analytic at t = t0. Let us assume that this point is t0 = 0. Frobenius’
method consists of the following technique: In the equation

x2y′′(x) + xα(x)y′(x) + β(x)y(x) = 0,

we assume a generalised series solution of the form

y(x) = xγ
∞
∑

n=0

cnxk.

Equating powers of x we find

γ(γ − 1)c0xγ + α0γc0xγ + β0c0xγ = 0,

etc. The equation for the lowest power of x can be rewritten as

γ(γ − 1) + α0γ + β0 = 0.

This is called the indicial equation . It is a quadratic equation in γ, that usually has
two (complex) roots. Let me call these γ1, γ2. If γ1 − γ2 is not integer one can prove
that the two series solutions for y with these two values of γ are independent solutions.

3 Special cases

For the two special cases I will just give the solution (too much work to do it in all
generality)

3.1 Two equal roots

If the indicial equation has two equal roots, γ1 = γ2, we have one solution of the form

y1(t) = tγ1

∞
∑

n=0

cntn.

The other solution takes the form

y2(t) = y1(t) ln t + tγ1+1
∞
∑

n=0

dntn.

Notice that this last solution is always singular at t = 0, whatever the value of γ1!

3.2 Two roots differing by an integer

If the indicial equation that differ by an integer, γ1−γ2 = n > 0, we have one solution
of the form

y1(t) = tγ1

∞
∑

n=0

cntn.

The other solution takes the form

y2(t) = ay1(t) ln t + tγ2

∞
∑

n=0

dntn.

The constant a is determined by substitution, and in a few relevant cases is even 0,
so that the solutions can be of the generalised series form.


