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Series solutions of D.E. (Frobenius’ method)

1 A simple example
Look at differential equation,
y'(t) =ty(t),

with initial conditions y(0) = a, y’(0) = b. Let us assume that there is a solution that
is analytical near ¢ = 0. This means that near ¢ = 0 the function has a Taylor’s series

ylt)=co+crt+...= chtk.
k=0
We find
y(t) = c+2ct+...= chktk_l
k=1
Y(t) = 2e0+3-2t+.. = k(k—1)cpt"!
k=2
ty(t) = cot+at’+... = cptht!
k=0
y' —ty = [2c04+3-2t4...] —[cot +c1t? +.. ]

262+(3‘263—Co)t+...

= 2¢9+ Z {k(k —1)cg — cp_s}tF=2
k=3

Here we have collected terms of equal power of ¢. The reason is simple. We are
requiring a power series to equal 0. The only way that can work is if each power of
z in the powerseries has zero coefficient. (Compare a finite polynomial....) We thus
find

Cy = O7 k‘(kj — 1)61c = Ck—3.

The last relation is called a recurrence of recursion relation, which we can use to
bootstrap from a given value, in this case ¢y and ¢;. Once we know these two numbers,

we can determine cz,cq4 and cs:

1 1 1 0
c3 = =Cy, C4= -——=cC1, C5= —cy=0.
3= 5 = pa 502
These in turn can be used to determine cg, c7, cg, etc. It is not too hard to find an
explicit expression for the ¢’s

_ 3m —2
@m = Bm)Bm — 1)(B3m — 2) 2D

B 3m —2 3m—5
= Bm)Bm—1)Bm—2) (3m — 3)(3m — 4)(3m — 5) >V
_ (B3m—=2)(3m—5)...1
B (3m)! 0,
B 3m—1

BmAl T Bm+ 1)(3m)(Bm — 1) 2D+
_ 3m—1 3m —4
T Bm+ 1)Bm)Bm—1) 3m — 2)(3m — 3)(3m — 4) -+
_ (3m—2)3m —5)...2
B (3m +1)! b

csm+1 = 0.

The general solution is thus

1+ Z Camt>™ | +b

m=1

y(t) =a

oo
14+ Z 03m+1t3m+1] )

m=1

The technique sketched here can be proven to work for any differential equation
y"(8) +p()y () + a(t)y(t) = (1)

provided that p(t), ¢(t) and f(t) are analytic at ¢t = 0. Thus if p, ¢ and f have a

power series expansion, so has y.

2 Singular points

Most equations of interest are of a form where p and/or ¢ are singular at the point
to (usually to = 0). Any point ty where p(t) and g(t) are singular is called a singular
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point. Of most interest are a special class of singular points regular singular points,
where the differential equation can be given as

(t—t0)*y"(t) + (t — to)a(t)y'(t) + B(t)y(t) = O,

with « and (§ analytic at t = ty. Let us assume that this point is t; = 0. Frobenius’
method consists of the following technique: In the equation

2®y" (x) + wa(2)y'(x) + Blz)y(z) = 0,

we assume a generalised series solution of the form
oo
— k
y(z) == ena”.
n=0

Equating powers of x we find
Y(v = Degz” + agycox” + Bocoz? =0,
etc. The equation for the lowest power of z can be rewritten as

Y(y = 1)+ aoy + B0 = 0.

’ This is called the indicial equation ‘ It is a quadratic equation in v, that usually has

two (complex) roots. Let me call these v1, 2. If 41 — 72 is not integer one can prove
that the two series solutions for y with these two values of v are independent solutions.

3 Special cases

For the two special cases I will just give the solution (too much work to do it in all
generality)

3.1 Two equal roots

If the indicial equation has two equal roots, 71 = 72, we have one solution of the form

(oo}

yi(t) =) ent™

n=0

The other solution takes the form

ya(t) = yr(t)Int + ¢ " d e,

n=0

Notice that this last solution is always singular at ¢ = 0, whatever the value of ;!

3.2 Two roots differing by an integer

If the indicial equation that differ by an integer, y1 —v2 = n > 0, we have one solution
of the form

o0
yr(t) =1 ent™
n=0

The other solution takes the form
ya2(t) = ayr (t) Int + 72 Z dpt™.
n=0

The constant a is determined by substitution, and in a few relevant cases is even 0,
so that the solutions can be of the generalised series form.



