2C1: P.D.E., Handout 8

Niels R. Walet, November 25, 2002
Niels.Walet@umist.ac.uk, http://walet.phy.umist.ac.uk/2C1/ Bessel function and 2D problems

1 Bessel's equation

Bessel's equation of order ν is given by

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0 .
$$

$x=0$ is a regular singular point. The indicial equation is

$$
\alpha^{2}-\nu^{2}=0
$$

The generalised series solution gives two independent solutions if $\nu \neq \frac{1}{2} n$.

$$
y=x^{\nu} \sum_{n} a_{n} x^{n} .
$$

We find

$$
\left.\sum_{n}(n+\nu)(n+\nu-1)\right) a_{\nu} x^{m+\nu}+\sum_{n}(n+\nu) a_{\nu} x^{m+\nu}+\sum_{n}\left(x^{2}-\nu^{2}\right) a_{\nu}=0
$$

which leads to

$$
\left((n+\nu)^{2}-\nu^{2}\right) a_{n}=-a_{n-2}
$$

or

$$
a_{n}=-\frac{1}{m(m+2 \nu)} a_{n-2}
$$

If we take $\nu=n>0$, we have

$$
a_{n}=-\frac{1}{m(m+2 n)} a_{n-2}
$$

This can be solved by iteration,

$$
\begin{aligned}
a_{2 k} & =-\frac{1}{4} \frac{1}{k(k+n)} a_{2(k-1)} \\
& =\left(\frac{1}{4}\right)^{2} \frac{1}{k(k-1)(k+n)(k+n-1)} a_{2(n-2)} \\
& =\left(-\frac{1}{4}\right)^{k} \frac{n!}{k!(k+n)!} a_{0} .
\end{aligned}
$$

If we choose $a_{0}=\frac{1}{n!2^{n}}$ we find the Bessel function of order n

$$
J_{n}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!(k+n)!}\left(\frac{x}{2}\right)^{2 k+n}
$$

There is amother independent solution (which should have a logarithm in it) with goes to inifinity at $x=0$.

The general solution is

$$
y(x)=A J_{n}(x)+B Y_{n}(x),
$$

where Y_{n} has a logarithmic singularity at the origin.

2 Properties of Bessel functions

Bessel functions have many interesting properties:

$$
\begin{align*}
J_{0}(0) & =1 \tag{1}\\
J_{n}(x) & =0(n>0) \tag{2}\\
J_{-n}(x) & =(-1)^{n} J_{n}(x) \tag{3}\\
\frac{d}{d x}\left[x^{-n} J_{n}(x)\right] & =-x^{-n} J_{n+1}(x) \tag{4}\\
\frac{d}{d x}\left[x^{n} J_{n}(x)\right] & =x^{n} J_{n-1}(x) \tag{5}\\
\frac{d}{d x}\left[J_{n}(x)\right] & =\frac{1}{2}\left[J_{n-1}(x)-J_{n+1}(x)\right] \tag{6}\\
x J_{n+1}(x) & =2 n J_{n}(x)-x J_{n-1}(x) \tag{7}\\
\int\left[x^{-n} J_{n+1}(x)\right] d x & =-x^{-n} J_{n}(x)+C \tag{8}\\
\int\left[x^{n} J_{n-1}(x)\right] d x & =x^{n} J_{n}(x)+C \tag{9}
\end{align*}
$$

3 Sturm-Liouville theory

We shall want to write a solution to an equation as a series of Bessel functions. We need to understand orthogonality of Bessel function. This is most easily done by developing a mathematical tool called Sturm-Liouville theory. It starts from an equation in the so-called self-adjoint form

$$
\begin{equation*}
\left[r(x) y^{\prime}(x)\right]^{\prime}+[p(x)+\lambda s(x)] y(x)=0 \tag{10}
\end{equation*}
$$

where λ is a number, and $r(x)$ and $s(x)$ are greater than 0 on $[a, b]$. We apply the boundary conditions

$$
\begin{aligned}
a_{1} y(a)+a_{2} y^{\prime}(a) & =0, \\
b_{1} y(b)+b_{2} y^{\prime}(b) & =0,
\end{aligned}
$$

with a_{1} and a_{2} not both zero, and b_{1} and b_{2} similar.
Theorem 1. If there is a solution to (10) then λ is real.
Assume $\lambda=\alpha+i \beta$, with solution Φ. By complex conjugation find

$$
\begin{aligned}
{\left[r(x) \Phi^{\prime}(x)\right]^{\prime}+[p(x)+\lambda s(x)] \Phi(x) } & =0 \\
{\left[r(x)\left(\Phi^{*}\right)^{\prime}(x)\right]^{\prime}+\left[p(x)+\lambda^{*} s(x)\right]\left(\Phi^{*}\right)(x) } & =0
\end{aligned}
$$

where * denotes complex conjugation. Multiply the first equation by $\Phi^{*}(x)$ and the second by $\Phi(x)$, and subtract the two equations, integrate over x from a to b and find

$$
\left(\lambda^{*}-\lambda\right) \int_{a}^{b} s(x) \Phi^{*}(x) \Phi(x) d x=\int_{a}^{b} \Phi(x)\left[r(x)\left(\Phi^{*}\right)^{\prime}(x)\right]^{\prime}-\Phi^{*}(x)\left[r(x) \Phi^{\prime}(x)\right]^{\prime} d x
$$

The second part can be integrated by parts, and we find

$$
\begin{aligned}
& \left(\lambda^{*}-\lambda\right) \int_{a}^{b} s(x) \Phi^{*}(x) \Phi(x) d x \\
& \quad=r(b)\left[\Phi^{\prime}(b)\left(\Phi^{*}\right)^{\prime}(b)-\Phi^{*}(b) \Phi^{\prime}(b)\right]-r(a)\left[\Phi^{\prime}(a)\left(\Phi^{*}\right)^{\prime}(a)-\Phi^{*}(a) \Phi^{\prime}(a)\right]=0
\end{aligned}
$$

where the last step can be done using the boundary conditions. Since both $\Phi^{*}(x) \Phi(x)$ and $s(x)$ are greater than zero we conclude that $\int_{a}^{b} s(x) \Phi^{*}(x) \Phi(x) d x>0$, which can now be divided out of the equation to lead to $\lambda=\lambda^{*}$.

Theorem 2. Let Φ_{n} and Φ_{m} be two solutions for different values of $\lambda, \lambda_{n} \neq \lambda_{m}$, then

$$
\int_{a}^{b} s(x) \Phi_{n}(x) \Phi_{m}(x) d x=0
$$

The proof is to a large extend identical to the one above: multiply the equation for $\Phi_{n}(x)$ by $\Phi_{m}(x)$ and vice-versa. Subtract and find

$$
\left(\lambda_{n}-\lambda_{m}\right) \int_{a}^{b} s(x) \Phi^{m}(x) \Phi_{n}(x) d x=0
$$

which leads us to conclude that

$$
\int_{a}^{b} s(x) \Phi_{n}(x) \Phi_{m}(x) d x=0
$$

Theorem 3. Under the conditions set out above
a) There exists a real infinite set of eigenvalues $\lambda_{0}, \ldots, \lambda_{n}, \ldots$ with $\lim _{n \rightarrow \infty}=\infty$. b)If Φ_{n} is the eigenfunction corresponding to λ_{n}, it has exactly n zeroes in $[a, b]$.

Clearly the Bessel equation is of self-adjoint form: rewrite

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0
$$

as (divide by x)

$$
\left[x y^{\prime}\right]^{\prime}+\left(x-\frac{n^{2}}{x}\right) y=0
$$

We cannot identify n with λ, and we do not have positive weight functions. It can be proven from properties of the equation that the Bessel functions have an infinite number of zeroes on the interval $[0, \infty)$. A small list of these:

J_{0}	$:$	2.42	5.52	8.65	11.79	\ldots
$J_{1 / 2}$	$:$	π	2π	3π	4π	\ldots
J_{8}	$:$	11.20	16.04	19.60	22.90	\ldots

4 Temperature on a disk

A circular disk is prepared such that the initial temperature is

$$
u(\rho, \phi, t=0)=f(\rho) .
$$

Then it is placed between two pefect insulators and its circumference is connected to a freezer that keeps it at $0^{\circ} \mathrm{C}$, as sketched in Fig. 1.

Figure 1: the initial temperature in the disk
Since the initial conditions do not depend on ϕ, we expect the solution to be radially symmetric as well, $u(\rho, t)$,

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k\left[\frac{\partial^{2} u}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial u}{\partial \rho}\right] \\
& u(c, t)=0 \\
& u(\rho, 0)=f(\rho)
\end{aligned}
$$

Separate variables, $u(\rho, t)=R(\rho) T(t)$,

$$
\begin{gathered}
\frac{1}{k} \frac{T^{\prime}}{T}=\frac{R^{\prime \prime}+\frac{1}{\rho} R^{\prime}}{R}=-\lambda \\
\rho^{2} R^{\prime \prime}+\rho R^{\prime}+\lambda \rho^{2} R=0 \quad R(c)=0 \\
T^{\prime}+\lambda k T=0 .
\end{gathered}
$$

Change variables to $x=\sqrt{\lambda} \rho$. We find

$$
\frac{d}{d \rho}=\sqrt{\lambda} \frac{d}{d x}
$$

and we can remove a common factor $\sqrt{\lambda}$ to obtain $(X(x)=R(\rho))$

$$
\left[x X^{\prime}\right]^{\prime}+x X=0,
$$

which is Bessel's equation of order 0, i.e.,

$$
R(\rho)=J_{0}(\rho \sqrt{\lambda}) .
$$

The boundary condition $R(c)=0$ shows that

$$
c \sqrt{\lambda_{n}}=x_{n}
$$

where x_{n} are the zero points of J_{0}. We thus conclude

$$
R_{n}(\rho)=J_{0}\left(\rho \sqrt{\lambda_{n}}\right)
$$

the first five solutions R_{n} (for $c=1$) are shown in Fig. 2.
From Sturm-Liouville theory we conclude that

$$
\int_{0}^{\infty} \rho d \rho R_{n}(\rho) R_{m}(\rho)=0 \text { if } n \neq m
$$

Together with the solution for the T equation,

$$
T_{n}(t)=\exp \left(-\lambda_{n} k t\right)
$$

we find a Fourier-Bessel series type solution

$$
u(\rho, t)=\sum_{n=1}^{\infty} A_{n} J_{0}\left(\rho \sqrt{\lambda_{n}}\right) \exp \left(-\lambda_{n} k t\right)
$$

Figure 2: A graph of the first five functions R_{n}
with $\lambda_{n}=\alpha_{n}^{2}=\left(x_{n} / c\right)^{2}$.
So for our initial problem we would have to calulate the integrals (see the next section for an explanation)

$$
A_{j}=\frac{2}{c^{2} J_{1}^{2}\left(c \alpha_{j}\right)} \int_{0}^{c} f(\rho) J_{0}\left(\alpha_{j} \rho\right) \rho d \rho
$$

5 Fourier-Bessel series

So how can we determine in general the coefficients in a Fourier-Bessel series

$$
f(\rho)=\sum_{j=1}^{\infty} J_{n}\left(\alpha_{j} \rho\right) ?
$$

We impose $f(c)=J_{n}\left(\alpha_{j} c\right)=0$, for ease of calculation. Other boundary conditions can be dealt with in the same way.

Write $R_{j}=J_{n}\left(\alpha_{j} \rho\right)$,

$$
\left(\rho R_{j}^{\prime}\right)^{\prime}+\left(\alpha_{j}^{2} \rho-\frac{n^{2}}{\rho}\right) R_{j}=0
$$

Where we assume that f and R satisfy the boundary condition

$$
\begin{aligned}
f(c) & ==0 \\
R_{j}(c) & =0
\end{aligned}
$$

From Sturm-Liouville theory we do know that

$$
\int_{0}^{c} \rho J_{n}\left(\alpha_{i} \rho\right) J_{n}\left(\alpha_{j} \rho\right)=0 \text { if } i \neq j
$$

but we shall also need the values when $i=j$!
Use Bessel's equation, multiply with $2 \rho R^{\prime}$, and integrate over ρ from 0 to c,

$$
\int_{0}^{c}\left[\left(\rho R_{j}^{\prime}\right)^{\prime}+\left(\alpha_{j}^{2} \rho-\frac{n^{2}}{\rho}\right) R_{j}\right] 2 \rho R_{j}^{\prime} d \rho=0
$$

We find

$$
\begin{aligned}
\int_{0}^{c} \frac{d}{d \rho}\left(\rho R_{j}^{\prime}\right)^{2} d \rho & =2 n^{2} \int_{0}^{c} R_{j} R_{j}^{\prime} d \rho-2 \alpha_{j}^{2} \int_{0}^{c} \rho^{2} R_{j} R_{j}^{\prime} d \rho \\
\left.\left(\rho R_{j}^{\prime}\right)^{2}\right|_{0} ^{c} & =\left.n^{2} R_{j}^{2}\right|_{0} ^{c}-2 \alpha_{j}^{2} \int_{0}^{c} \rho^{2} R_{j} R_{j}^{\prime} d \rho
\end{aligned}
$$

The last integral can be done by parts:

$$
2 \int_{0}^{c} \rho^{2} R_{j} R_{j}^{\prime} d \rho=\int_{0}^{c} \rho^{2}\left(R_{j}^{2}\right)^{\prime} d \rho=-2 \int_{0}^{c} \rho^{2} R_{j}^{2} d \rho+\left.\rho^{2} R_{j}^{2}\right|_{0} ^{c}
$$

So we finally conclude that

$$
2 \alpha_{j}^{2} \int_{0}^{c} \rho R_{j}^{2} d \rho=\left[\left(\alpha_{j}^{2} \rho^{2}-n^{2}\right) R_{j}^{2}+\left.\left(\rho R_{j}^{\prime}\right)^{2}\right|_{0} ^{c} .\right.
$$

Use the boundary conditions $R_{j}(c)=0$, and find

$$
R_{j}^{\prime}=\alpha_{j} J_{n}^{\prime}\left(\alpha_{j} \rho\right)
$$

We conclude that

$$
2 \alpha_{j}^{2} \int_{0}^{c} \rho R_{j}^{2} d \rho=\left[\left.\left(\rho \alpha_{j} J_{n}^{\prime}\left(\alpha_{j} \rho\right)\right)^{2}\right|_{0} ^{c}=c^{2} \alpha_{j}^{2}\left(J_{n+1}\left(\alpha_{j} c\right)\right)^{2}\right.
$$

We thus finally have our result

$$
\int_{0}^{c} \rho R_{j}^{2} d \rho=\frac{c^{2}}{2} J_{n+1}^{2}\left(\alpha_{j} c\right)
$$

Why good we have guessed the presence of the factor ρ ?
Example 1:

Consider the function

$$
f(x)= \begin{cases}x^{3} & 0<x<10 \\ 0 & x>10\end{cases}
$$

Expand this function in a Fourier-Bessel series using J_{3}.

Solution:

From our definitions we find that

$$
f(x)=\sum_{j=1}^{\infty} A_{j} J_{3}\left(\alpha_{j} x\right)
$$

with

$$
\begin{aligned}
A_{j} & =\frac{2}{100 J_{4}\left(10 \alpha_{j}\right)^{2}} \int_{0}^{10} x^{3} J_{3}\left(\alpha_{j} x\right) d x \\
& =\frac{2}{100 J_{4}\left(10 \alpha_{j}\right)^{2}} \frac{1}{\alpha_{j}^{5}} \int_{0}^{10 \alpha_{j}} s^{4} J_{3}(s) d s \\
& =\frac{2}{100 J_{4}\left(10 \alpha_{j}\right)^{2}} \frac{1}{\alpha_{j}^{5}}\left(10 \alpha_{j}\right)^{4} J_{4}\left(10 \alpha_{j}\right) d s \\
& =\frac{200}{\alpha_{j} J_{4}\left(10 \alpha_{j}\right)}
\end{aligned}
$$

The first five values of A_{j} are 1050.95, -821.503, 703.991, $-627.577,572.301$, and the first five partial sums are plotted in Fig. 3.

Figure 3: A graph of the first five partial sums for x^{3} expressed in J_{3}.

