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Bessel function and 2D problems

1 Bessel’s equation

Bessel’s equation of order ν is given by

x2y′′ + xy′ + (x2 − ν2)y = 0.

x = 0 is a regular singular point. The indicial equation is

α2 − ν2 = 0

The generalised series solution gives two independent solutions if ν 6= 1
2n.

y = xν
∑

n

anxn.

We find
∑

n

(n + ν)(n + ν − 1))aνxm+ν +
∑

n

(n + ν)aνxm+ν +
∑

n

(x2 − ν2)aν = 0

which leads to
((n + ν)2 − ν2)an = −an−2

or
an = − 1

m(m + 2ν)
an−2.

If we take ν = n > 0, we have

an = − 1
m(m + 2n)

an−2.

This can be solved by iteration,

a2k = −1
4

1
k(k + n)

a2(k−1)

=
(

1
4

)2 1
k(k − 1)(k + n)(k + n− 1)

a2(n−2)

=
(

−1
4

)k n!
k!(k + n)!

a0.

If we choose a0 = 1
n!2n we find the Bessel function of order n

Jn(x) =
∞
∑

k=0

(−1)k

k!(k + n)!

(x
2

)2k+n
.

There is amother independent solution (which should have a logarithm in it) with
goes to inifinity at x = 0.
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The general solution is

y(x) = AJn(x) + BYn(x),

where Yn has a logarithmic singularity at the origin.
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2 Properties of Bessel functions

Bessel functions have many interesting properties:

J0(0) = 1 (1)

Jn(x) = 0 (n > 0) (2)

J−n(x) = (−1)nJn(x) (3)
d
dx

[

x−nJn(x)
]

= −x−nJn+1(x) (4)

d
dx

[xnJn(x)] = xnJn−1(x) (5)

d
dx

[Jn(x)] = 1
2 [Jn−1(x)− Jn+1(x)] (6)

xJn+1(x) = 2nJn(x)− xJn−1(x) (7)
∫

[x−nJn+1(x)] dx = −x−nJn(x) + C (8)
∫

[xnJn−1(x)] dx = xnJn(x) + C (9)

3 Sturm-Liouville theory

We shall want to write a solution to an equation as a series of Bessel functions.
We need to understand orthogonality of Bessel function. This is most easily done
by developing a mathematical tool called Sturm-Liouville theory. It starts from an
equation in the so-called self-adjoint form

[r(x)y′(x)]′ + [p(x) + λs(x)]y(x) = 0 (10)

where λ is a number, and r(x) and s(x) are greater than 0 on [a, b]. We apply the
boundary conditions

a1y(a) + a2y′(a) = 0,

b1y(b) + b2y′(b) = 0,

with a1 and a2 not both zero, and b1 and b2 similar.

Theorem 1. If there is a solution to (10) then λ is real.

Assume λ = α + iβ, with solution Φ. By complex conjugation find

[r(x)Φ′(x)]′ + [p(x) + λs(x)]Φ(x) = 0

[r(x)(Φ∗)′(x)]′ + [p(x) + λ∗s(x)](Φ∗)(x) = 0

where ∗ denotes complex conjugation. Multiply the first equation by Φ∗(x) and the
second by Φ(x), and subtract the two equations, integrate over x from a to b and find

(λ∗ − λ)
∫ b

a
s(x)Φ∗(x)Φ(x) dx =

∫ b

a
Φ(x)[r(x)(Φ∗)′(x)]′ − Φ∗(x)[r(x)Φ′(x)]′ dx

The second part can be integrated by parts, and we find

(λ∗ − λ)
∫ b

a
s(x)Φ∗(x)Φ(x) dx

= r(b) [Φ′(b)(Φ∗)′(b)− Φ∗(b)Φ′(b)]− r(a) [Φ′(a)(Φ∗)′(a)− Φ∗(a)Φ′(a)] = 0,

where the last step can be done using the boundary conditions. Since both Φ∗(x)Φ(x)
and s(x) are greater than zero we conclude that

∫ b
a s(x)Φ∗(x)Φ(x) dx > 0, which can

now be divided out of the equation to lead to λ = λ∗.

Theorem 2. Let Φn and Φm be two solutions for different values of λ, λn 6= λm,
then

∫ b

a
s(x)Φn(x)Φm(x) dx = 0.

The proof is to a large extend identical to the one above: multiply the equation for
Φn(x) by Φm(x) and vice-versa. Subtract and find

(λn − λm)
∫ b

a
s(x)Φm(x)Φn(x) dx = 0

which leads us to conclude that
∫ b

a
s(x)Φn(x)Φm(x) dx = 0.

Theorem 3. Under the conditions set out above
a) There exists a real infinite set of eigenvalues λ0, . . . , λn, . . . with limn→∞ = ∞.
b)If Φn is the eigenfunction corresponding to λn, it has exactly n zeroes in [a, b].

Clearly the Bessel equation is of self-adjoint form: rewrite

x2y′′ + xy′ + (x2 − n2)y = 0

as (divide by x)

[xy′]′ + (x− n2

x
)y = 0
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We cannot identify n with λ, and we do not have positive weight functions. It can
be proven from properties of the equation that the Bessel functions have an infinite
number of zeroes on the interval [0,∞). A small list of these:

J0 : 2.42 5.52 8.65 11.79 . . .
J1/2 : π 2π 3π 4π . . .
J8 : 11.20 16.04 19.60 22.90 . . .

4 Temperature on a disk

A circular disk is prepared such that the initial temperature is

u(ρ, φ, t = 0) = f(ρ).

Then it is placed between two pefect insulators and its circumference is connected to
a freezer that keeps it at 0◦ C, as sketched in Fig. 1.
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Figure 1: the initial temperature in the disk

Since the initial conditions do not depend on φ, we expect the solution to be radially
symmetric as well, u(ρ, t),

∂u
∂t

= k
[

∂2u
∂ρ2 +

1
ρ

∂u
∂ρ

]

,

u(c, t) = 0,

u(ρ, 0) = f(ρ).

Separate variables, u(ρ, t) = R(ρ)T (t),

1
k

T ′

T
=

R′′ + 1
ρR′

R
= −λ

ρ2R′′ + ρR′ + λρ2R = 0 R(c) = 0

T ′ + λkT = 0.

Change variables to x =
√

λρ. We find

d
dρ

=
√

λ
d
dx

,

and we can remove a common factor
√

λ to obtain (X(x) = R(ρ))

[xX ′]′ + xX = 0,

which is Bessel’s equation of order 0, i.e.,

R(ρ) = J0(ρ
√

λ).

The boundary condition R(c) = 0 shows that

c
√

λn = xn,

where xn are the zero points of J0. We thus conclude

Rn(ρ) = J0(ρ
√

λn).

the first five solutions Rn (for c = 1) are shown in Fig. 2.
From Sturm-Liouville theory we conclude that

∫ ∞

0
ρdρRn(ρ)Rm(ρ) = 0 if n 6= m.

Together with the solution for the T equation,

Tn(t) = exp(−λnkt)

we find a Fourier-Bessel series type solution

u(ρ, t) =
∞
∑

n=1

AnJ0(ρ
√

λn) exp(−λnkt),
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Figure 2: A graph of the first five functions Rn

with λn = α2
n = (xn/c)2.

So for our initial problem we would have to calulate the integrals (see the next
section for an explanation)

Aj =
2

c2J2
1 (cαj)

∫ c

0
f(ρ)J0(αjρ)ρdρ.

5 Fourier-Bessel series

So how can we determine in general the coefficients in a Fourier-Bessel series

f(ρ) =
∞
∑

j=1

Jn(αjρ)?

We impose f(c) = Jn(αjc) = 0, for ease of calculation. Other boundary conditions
can be dealt with in the same way.

Write Rj = Jn(αjρ),

(ρR′j)
′ + (α2

jρ−
n2

ρ
)Rj = 0.

Where we assume that f and R satisfy the boundary condition

f(c) = = 0,

Rj(c) = 0

From Sturm-Liouville theory we do know that
∫ c

0
ρJn(αiρ)Jn(αjρ) = 0 if i 6= j,

but we shall also need the values when i = j!
Use Bessel’s equation, multiply with 2ρR′, and integrate over ρ from 0 to c,

∫ c

0

[

(ρR′j)
′ + (α2

jρ−
n2

ρ
)Rj

]

2ρR′jdρ = 0

We find
∫ c

0

d
dρ

(

ρR′j
)2

dρ = 2n2
∫ c

0
RjR′jdρ− 2α2

j

∫ c

0
ρ2RjR′jdρ

(

ρR′j
)2

∣

∣

∣

c

0
= n2R2

j

∣

∣

c

0
− 2α2

j

∫ c

0
ρ2RjR′jdρ

The last integral can be done by parts:

2
∫ c

0
ρ2RjR′jdρ =

∫ c

0
ρ2(R2

j )
′dρ = −2

∫ c

0
ρ2R2

jdρ + ρ2R2
j

∣

∣

c

0

So we finally conclude that

2α2
j

∫ c

0
ρR2

jdρ =
[

(

α2
jρ

2 − n2)R2
j +

(

ρR′j
)2

∣

∣

∣

c

0
.

Use the boundary conditions Rj(c) = 0, and find

R′j = αjJ ′n(αjρ).

We conclude that

2α2
j

∫ c

0
ρR2

jdρ =
[

(ραjJ ′n(αjρ))2
∣

∣

∣

c

0
= c2α2

j (Jn+1(αjc))
2

We thus finally have our result
∫ c

0
ρR2

jdρ =
c2

2
J2

n+1(αjc).

Why good we have guessed the presence of the factor ρ?
Example 1:
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Consider the function

f(x) =
{

x3 0 < x < 10
0 x > 10

Expand this function in a Fourier-Bessel series using J3.

Solution:

From our definitions we find that

f(x) =
∞
∑

j=1

AjJ3(αjx),

with

Aj =
2

100J4(10αj)2

∫ 10

0
x3J3(αjx)dx

=
2

100J4(10αj)2
1
α5

j

∫ 10αj

0
s4J3(s)ds

=
2

100J4(10αj)2
1
α5

j
(10αj)4J4(10αj)ds

=
200

αjJ4(10αj)

The first five values of Aj are 1050.95,−821.503, 703.991,−627.577, 572.301,
and the first five partial sums are plotted in Fig. 3.
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Figure 3: A graph of the first five partial sums for x3 expressed in J3.


