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Chapter 1

Introduction and Prerequisites

This document is based on a summary of the main mathematical results of the course initially prepared
by Graham Shaw. I hope they have turned into a reasonably complete guide to the material presented in
the course, and in an accurate form!

I would suggest you come back to this reasonably often, as this is always very much a work in
progress. Please let me know if you find any typos or slips, so I can fix them.

This is not intended to be an absolutely complete set of notes, and thus do not be surprised if some
derivations and examples of applying the results are not given, or are very much abbreviated. Of course,
this does not imply you do not need to be able to derive or apply these results. Nor need you necessarily
memorise very complicated equations, just because they are included here. Common sense must be
applied; use of good textbooks next to these notes is advisable!

There are many different ways to remember mathematics and much of physics. One that I find quite
useful is to understand a number of the key principles underlying this work, so that you can derive most
results quickly. Combined with practise from both the example sheets and additional material as can be
found in the textbooks, should prepare you quite well for this course.

1.1 Prerequisites

The course PHYS 20171, Mathematics of Waves and Fields, is a prerequisite for this course. If you feel
rusty, have a look at my website for the material for the related 2C1 course (walet.phy.umist.ac.uk/2C1)),
which may help to refresh your memory.

In addition, the Section on Green Functions requires a simple knowledge of contour integration and
the . The latter material has been covered in MATH 20612.

Alternatively, a student who has not attended this course should read Appendix A (about 10 pages)
and the first two or three pages of section 3.3 of Matthews and Walker, Mathematical Methods of Physics.
(The later pages of section 3.3 involve integrating around cuts and branch points, which will not be
required here.) There is also a mathematica notebook (Contour.nb) available on the course web site
walet.phy.umist.ac.uk/MaMe, as well as a pdf file (Contour.pdf), and much of the material is also sum-
marised in Appendix A.
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Chapter 2

Linear vector spaces

2.1 Definition of a linear vector space

A linear vector space V over a scalar set S (we shall typically consider sets S = R or C) is a set of objects
(called vectors) a, b, c, . . . with two operations:

1. Addition of any two vectors, c = a + b;

2. Multiplication by a scalar λ ∈ S, b = λa.

These must satisfy the following conditions

1. V is closed under addition, ∀a, b ∈ V : a + b ∈ V.

2. Addition is commutative:
∀a, b ∈ V : a + b = b + a

and associative
∀a, b, c ∈ V : (a + b) + c = a + (b + c).

3. There exists a null vector 0 ∈ V, ∀a ∈ V : a + 0 = a.

4. Every element a ∈ V has an inverse −a ∈ V such that a + (−a) = 0.

5. The set V is closed under multiplication by a scalar, ∀a ∈ V, λ ∈ S : λa ∈ V.

6. The multiplication is distributive for addition of both vectors and scalars,

∀a, b ∈ V, λ ∈ S : λ(a + b) = λa + λb,
∀a ∈ V, λ, µ ∈ S : (λ + µ)a = λa + µa,

and associative,

∀a ∈ V, λ, µ ∈ S :λ(µa) = (λµ)a.

7. There is a unit element 1 in S, such that 1a = a.

Note that we have not defined subtraction; it is derived operation, and is defined through
the addition of an inverse element.
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Example 2.1:

The space R3 of vectors r =

x
y
z

 = xi + yj + zk is a vector space over the set S = R.

Example 2.2:

The space of two-dimensional complex spinors(
α
β

)
= α

(
1
0

)
+ β

(
0
1

)
,

α, β ∈ C, is a vector space.
Note: If we look at the space of up and down spins, we must require that the length of the
vectors (the probability), |α|2 + |β|2, is 1. This is not a vector space, since∣∣∣∣(α1

β1

)
+
(

α2
β2

)∣∣∣∣2 = |α1 + α2|2 + |β1 + β2|2 = |α1|2 + |β1|2 + |α2|2 + |β2|2 + 2<(α∗1α2 + β∗1β2),

which is not necessarily equal to 1.

Example 2.3:

The space of all square integrable (i.e., all functions f with
∫

dx | f (x)|2 < ∞) complex func-
tions f of a real variable, f : R 7→ C is a vector space, for S = C.

The space defined above is of crucial importance in Quantum Mechanics. These wave func-
tions are normalisable (i.e., we can define one with total probability 1).

The space of all functions f , f : R 7→ C with
∫

dx | f (x)|2 < ∞ is denoted as L2(R).

2.1.1 Problems

1. Show that the zero vector 0 is unique, and that for each a there is only one inverse −a.

2.2 Linear independence and basis vectors

A set of vectors a, b, . . . , u is said to be linearly independent provided the equation

λa + µb + . . . + σu = 0

has no solution except λ = µ = . . . = σ = 0.

This can be used to show that when you pick one of the vectors a, b, . . . , u, it can not be expressed as
a sum over the rest. There usually is a largest number of independent vectors:

The dimension n of a space is the largest possible number of linearly independent vectors
which can be found in the space.

Any set of n linearly independent vectors e1, e2, . . . , en in an n-dimensional space is said to form a
complete set of basis vectors, since one can show that any vector x in the space can be expanded in the form

x = x1e1 + x2e2 + ... + xnen, (2.1)

where the numbers xi are called the components of x in the basis e1, e2, . . . , en.
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Example 2.4:

Show that the vectors (1, 1, 0), (1, 0, 1) and (0, 1, 1) are linearly independent. Find the compo-
nent of a general vector (x, y, z) in this basis.

Solution:

We get the three coupled equations

x = x1 + x2,
y = x1 + x3,
z = x2 + x3.

These have a unique solution if the determinant is not zero,

det

1 1 0
1 0 1
0 1 1

 6= 0.

This is true, since the determinant equals −2. The components are found by solving the equa-
tions (Gaussian elimination is quite easy in this case):

x1 =
1
2
(x + y− z), x2 =

1
2
(x + z− y), x3 = (y + z− x).

Theorem 2.1. The decomposition (2.1) is unique.

Proof. Suppose that there is a second decomposition, x = y1e1 + y2e2 + ... + ynen. Subtract the left- and
right-hand sides of the two decompositions, collecting terms:

0 = (x1 − y1)e1 + (x2 − y1)e2 + ... + (xn − yn)en.

Linear independence of the vectors {ei} implies that xi = yi, which contradicts our assumption of a
second decomposition, and thus it is unique.

Let us look at an example in an infinite dimensional space:
Example 2.5:

The Fourier decomposition of a function defined only on the interval [−π, π] is given by

f (x) = a0 +
∞

∑
n=1

(an cos nx + bn sin nx) .

This means that for the Fourier series the basis functions are:

1, {sin nx, cos nx}, n = 1, . . . , ∞ .

It is highly non-trivial (i.e., quite hard) to show that this basis is complete! This is a general complication
in infinite dimensional spaces.

2.2.1 The scalar product

For any two vectors a, b we can define a scalar product1 (a, b) [the mathematicians’ preferred notation
for a · b], which satisfies:

(a, b) = (b, a)∗, (2.2)
(a, λb + µc) = λ(a, b) + µ(a, c) , (2.3)

1we shall also use the term inner product for this operation.
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together with
(a, a) ≥ 0, (2.4)

where the equality holds for a = 0 only.
Note: Mathematically the inner product is a mapping from V ⊗V 7→ S!
Note: In functional spaces we physicists often use the Dirac bra-ket notation 〈ψ|φ〉 for (ψ, φ) . We can use
the inner product to define the norm (a more correct description of the length) of the vector a,

‖a‖ ≡ (a, a)1/2.

One can define a length without an inner product. A good example is the so-called “1-norm”
of a vector, ||x||1 = ∑n |xn|, which is used quite commonly in numerical analysis of linear
algebra.

One of the important uses of an inner product is to test whether two vectors are at straight angles:

The vectors a and b are said to be orthogonal if (a, b) = 0.

Triangle and Cauchy-Schwartz inequality

The triangle inequality is a trivial statement that the length of the sum of two vectors is less than the sum
of the lengths,

‖a + b‖ ≤ |a + b|.

From the triangle inequality we can prove the Cauchy Schwartz inequality

Theorem 2.2. For any two vectors a, b, we have

|(a, b)| ≤ ab.

Proof. The proof is simple. Consider (a + xb, a + xb, ), which is ≥ 0. Minimise this with respect to x, and
we find a minimum for x = −(a, b)/‖b‖2. At that point the function takes on the value a2− (a, b)2/b2 ≥ 0.
Multiply this by b2 and take the square root at both sides for the desired result.

Orthogonalisation and Orthogonalisation

There are two ways to turn an arbitrary set of vectors into an orthogonal set–one where every pair of
vectors is orthogonal–, or even better orthonormal set–an orthogonal set where each vector has length
one.

The most traditional approach is the Gramm-Schmidt procedure. This procedure is defined recur-
sively. In the mth step of the algorithm one defines the vector e′m that is orthonormal to the m − 1 or-
thonormal vectors defined in previous steps. Thus

1 :e′′m = em −
m−1

∑
i=1

(e′i, em)e′i;

2 :e′m = e′′m/‖e′′m‖.

The first line above removes all components parallel to the m − 1 previous normalised and orthogonal
vectors (check!), the second step normalises the result, so that e′m is normalised.

A more modern approach (based on extensive use of numerical linear algebra) is based on the con-
struction of the “overlap matrix” (also called norm matrix, which is why we use the symbol) N, with
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entries Nij = (ei, ej). This matrix is Hermitian (or symmetric if the basis is real), and we can now define a
matrix N−1/2, such that N−1/2NN−1/2 = I. This can then be used to define the orthonormal basis

e′(i)
k = (N−1/2)kle

(i)
l .

For a real symmetric matrix M (and similarly for a Hermitian one, but we shall concentrate
on the first case here) we can define matrix powers in a simple and unique way by requiring
that the powers are also symmetric matrices.
The easiest way to get the result is first to diagonalise the matrix M, i.e., to find its eigenvalues
λi and eigenvectors e(i)

j . We can then write M = O diag(λ)OT , with O the matrix with the

normalised eigenvectors as columns, Oij = e(j)
i . The eigenvectors are orthonormal, and thus

OTO = I. The matrix diag(..) has the eigenvalues λ on the diagonal, and is zero elsewhere.
(Convince yourself that OTO = I and OT MO = diag(λ).)
We then define arbitrary powers of M by

Ma = O diag(λa)OT .

Question: Show that Ma is a symmetric matrix

Orthonormal basis functions: For discrete2 vector spaces one can always choose an orthonormal set of
basis functions satisfying

(ei, ej) = δij. (2.5)

Here we have introduced the Kronecker delta δij, defined for integer i, j. This object is zero
unless i = j, when it is 1.

For such an orthonormal basis the completeness relation can be written as

∑
i
(ei)a(ei)b = δab. (2.6)

2.2.2 Questions

2. Use the definition of independence to show that Eq. (2.1) holds for any set of independent
functions.

2.3 Function spaces

2.3.1 Continuous basis functions: Fourier Transforms

For a vector space of complex valued functions f : R 7→ C one can choose basis functions3

ek = φk(x) =
1√
2π

eikx, −∞ < k < ∞,

and expand in these functions,

f (x) =
∫ ∞

−∞
dk φk(x) f̃ (k). (2.7)

2Discrete here means that we can label the basis vectors by a finite or infinite set of integers. It contrasts to continuous bases, as
discussed in the next section.

3If we work in a real function space we should use the real and imaginary parts as a basis for real functions, but it is often easier
to deal even with real functions as if they are complex. Think about the Fourier transform of a real function, see below.
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The expansion coefficient is nothing but the Fourier transform,

f̃ (k) =
∫ ∞

−∞
dx φ∗k (x) f (x). (2.8)

In much of physics, one traditionally does not normalise the φk, but uses φk(x) = eikx. In that
case an explicit factor 2π enters in the Fourier transforms, but not in the inverse one,

f (x) =
∫ ∞

−∞

dk
2π

eikx f̃ (k),

f̃ (k) =
∫ ∞

−∞
dx e−ikx f (x).

In order to figure out the orthogonality relations, we substitute (2.8) into (2.7), which gives the relation

f (x) =
∫ ∞

−∞
dk φk(x)

∫ ∞

−∞
dx′ φ∗k (x′) f (x′), (2.9)

which must hold for any f (x). We now swap integrals, and find

f (x) =
∫ ∞

−∞
dx′

[∫ ∞

−∞
dk φk(x)φ∗k (x′)

]
f (x′). (2.10)

We call the object between square brackets the “Dirac delta function” δ(x− x′), where δ(y) can be defined
using the explicit definition of the functions φk, as

δ(y) =
1

2π

∫ ∞

−∞
dz eiyz. (2.11)

(See the appendix to this chapter, 2.4, for additional properties.)
From the definition (2.11) of the delta function, we can show that the basis states satisfy the orthonor-

mality relation

(φk, φk′) =
∫ ∞

−∞
dx φ∗k (x)φk′(x) = δ(k− k′)

and the completeness relation ∫ ∞

−∞
dk φ∗k (x)φk(x′) = δ(x− x′).

2.3.2 General orthogonality and completeness in function spaces

We start with a space of functions, where the scalar product is assumed to be defined by4

(φ, ψ) =
∫

dx φ∗(x)ψ(x),

where the space from which φ and ψ are chosen is such that the integral is finite for any pair. In general:

Any vector space of functions with a scalar product, where all functions have finite norm,
is called a Hilbert space.

4More general definitions are possible, but apart from some minor changes to the algebra, the final results hold for all scalar
products
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Suppose in this space we have a discrete (i.e., labelled by integers), but let us assume infinite, set of
basis functions φn, chosen to be orthonormal (similar to Eq. (2.5))

(φm, φn) =
∫

dx φ∗m(x)φn(x) = δnm,

using orthogonalisation if necessary. Then an arbitrary ψ(x) can be decomposed as

ψ(x) = ∑
n

cnφn(x). (2.12)

The coefficients cn can be determined from the orthogonality relation, multiplying (2.12) from the left
with ψ∗m, integrating with respect to x, exchanging the order of the summation and the integration on the
right-hand side, we find that

(φm, ψ) = ∑
n

cn(φm, φn) = ∑
n

cnδmn,

from which we conclude that
cm = (φm, ψ). (2.13)

Substituting Eq. (2.13) into Eq. (2.12) we find

ψ(x) = ∑
n

∫
dx′ φn(x′)∗ψ(x′)φn(x)

=
∫

dx′
[
∑
n

φn(x′)∗φn(x)

]
ψ(x) ,

where we have interchanged the summation and integration (which mathematicians will tell you may be
incorrect!). From this we conclude that

∑
n

φn(x′)∗φn(x) = δ(x− x′),

which is the form of the completeness relation for a basis labelled by a continuous variable. If the basis
is labelled by a continuous label, as for the Fourier transformation, we get the completeness relations
discussed for that case, Eqs. (2.9,2.10). This leads to

(φk, φk) = δ(0).

In this case we do not speak of a Hilbert space, since the basis is not normalisable, the norm of the basis
states is necessarily infinite.

2.3.3 Example from Quantum Mechanics

Much of what we have stated in this section can be illustrated for quantum mechanical problems. Like all
linear wave problems, QM relies heavily on the principle of superposition:

For any physical system, if ψ1(x, t) and ψ2(x, t) are possible wave functions, then so is

ψ(x, t) = λψ1(x, t) + µψ2(x, t),

where λ and µ are arbitrary complex numbers.a

aThis superposition principle is not a QM property, but one that is common to all (wave) solutions to linear
wave equations.
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Figure 2.1: A sketch of 1
2π

2
x sin(Lx) for a few values of L. This function converges to a Dirac delta function

This implies that the space of all ψ is a linear vector space (over x, since t is a parameter that describes the
time evolution).

A very important statement can now be found in the fact that:

Theorem 2.3. The eigenfunctions ψn(x) of any physical operator form a complete set. (Can be proven for specific
cases only.)

This implies that
ψ(x, t) = ∑

n
cn(t)ψn(x).

A very clear example are the eigenstates of the harmonic oscillator Hamiltonian,

Ĥ = − h̄2

2m
d2

dx2 +
1
2

mω2x2.

The solutions of the Schrödinger equation

Ĥψ(x, t) = h̄i∂tψ(x, t)

are ψn(x) = exp(−x2/(2b2))Hn(x/b), with Hn a (Hermite) polynomial. In this case the time-dependence
is determined by the eigenenergies, and we conclude that

ψ(x, t) = ∑
n

ane−i(n+1/2)ωtψn(x).

2.4 The Dirac delta function

The Dirac delta function δ(x) is defined by the “reproducing” property, i.e.,∫
dx′ δ(x− x′) f (x′) = f (x)

for any function f (x).5 This is equivalent to the following explicit definition (further forms are discussed
in the Mathematica examples), see also Fig. 2.1.

δ(x) =
1

2π

∫ ∞

−∞
dz eizx ≡ 1

2π
lim

L→∞

∫ L

−L
dz eizx =

1
2π

lim
L→∞

2
x

sin(Lx) .

It is often useful to think of the δ function as the limit of a simple function, and one example is an
infinitely narrow spike, as in Fig. 2.2 for a → 0.

5The δ function is strictly speaking not a function, it is only defined inside an integral!

http://walet.phy.umist.ac.uk/MaMe/index.php?doc=MMA
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Figure 2.2: A sketch of a piecewise constant function, that in the limit a → 0 gives the Dirac delta function

Important properties

Since integration with the δ function “samples” f (x′) at the single point x′ = x, we must conclude that

δ(x− x′) =0 for x 6= x′.

The area under the δ function is 1, as can be seen from taking f (x′) = 1. Combining the last two results
leads to an interesting expression for the area under the curve,∫ x+ε

x−ε
δ(x− x′) =1 for any ε > 0.

A very useful relation is obtained when we scale the variables in the delta function (y = ax)∫ ∞

−∞
dx′ δ(a(x− x′)) f (x′) = sign(a)

1
a

∫ ∞

−∞
dy′ δ(y− y′) f (y′/a) =

f (y/a)
|a| =

f (x)
|a| .

We can interpret this is as the contribution from the slope of the argument of the delta function, which
appears inversely in front of the function at the point where the argument of the δ function is zero. Since
the δ function is even, the answer only depends on the absolute value of a. Also note that we only need
to integrate from below to above the singularity; it is not necessary to integrate over the whole infinite
interval.

This result can now be generalised to a δ-function with a function as argument. Here we need to sum
over all zeroes of the function inside the integration inetrval, and the quantity a above becomes the slope
at each of the zeroes, ∫ b

a
dx g(x) δ ( f (x)) = ∑

i

 g(x)∣∣∣ d f
dx

∣∣∣


x=xi

where the sum extends over all points xi in ]a, b[ where f (xi) = 0.
Example 2.6:

Calculate the integral ∫ ∞

−∞
f (x)δ(x2 − c2t2).

Solution:

Let us first calculate the zeroes of x2 − c2t2, x = ±ct.. The derivative of x2 − c2t2 at these points
is ±2ct, and thus ∫ ∞

−∞
f (x)δ(x2 − c2t2) =

1
2ct

( f (ct) + f (−ct)) .

Integrals such as these occur in electromagnetic wave propagation.
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Chapter 3

Operators, Eigenvectors and
Eigenvalues

3.1 Linear operators

A linear operator L acts on vectors a, b . . . in a linear vector space V to give new vectors La, Lb, . . . such
that1

L(λa + µb) = λLa + µLb

Example 3.1:

1. Matrix multiplication of a column vector by a fixed matrix is a linear operation, e.g.

Lx =
(

1 2 3
4 8 −1

)
x.

2. Differentiation is a linear operation, e.g.,

L f (x) =
d

dx
f (x).

3. Integration is linear as well,

(L1 f )(x) =
∫ x

0
f (x′)dx′,

(L2 f )(x) =
∫ 1

0
G(x, x′) f (x′)dx′,

are both linear (see example sheet).

3.1.1 Domain, Codomain and Range

If the operators L maps the vector f on the vector g, L f = g, the vector space of f ’s (the domain) can be
different from the vector space of g’s (the codomain or target). L is an operator which maps the domain
onto the codomain, and even though it is defined for every element of the domain, the image of the
domain (called the “range of L” or the “image of L”) is in general only a subset of the codomain, see
Fig. 3.1, even though in many physical cases we shall assume that the range and codomain coincide.

1This changes in the most general case where multiplication is not commutative!

13
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Figure 3.1: The definition of domain, codomain and range

Example 3.2:

1. The operator L: Cn → C defined by La = (a, b) with b a fixed vector, is a linear operator.

2. The matrix
(

3 2 1
6 4 2

)
maps from the space R3 of 3-vectors to the codomain R2 of 2-

vectors. The range is the 1D subset of vectors λ

(
1
2

)
, λ ∈ R.

3. The (3D) gradient operator ∇ maps from the space of scalar fields ( f (x) is a real function
of 3 variables) to the space of vector fields (∇ f (x) is a real 3-component vector function
of 3 variables).

3.1.2 Matrix representations of linear operators

Let L be a linear operator, and y = lx. Let e1, e2, . . . and u1, u2, . . . be chosen sets of basis vectors in the
domain and codomain, respectively, so that

x = ∑
i

eixi, y = ∑
i

uiyi.

Then the components are related by the matrix relation

yj = ∑
i

Ljixi,

where the matrix Lji is defined by

Lei = ∑
j

ujLji = ∑
j

(
LT
)

ij
uj. (3.1)

Notice that the transformation relating the components x and y is the transpose of the matrix
that connects the basis. This difference is related to what is sometimes called the active
or passive view of transformations: in the active view, the components change, and the
basis remains the same. In the passive view, the components remain the same but the basis
changes. Both views represent the same transformatio!

If the two basis sets {ei} and {uj} are both orthonormal, we can find the matrix elements of L as an
innerproduct,

Lji = (uj, Lei). (3.2)
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Example 3.3:

Find a matrix representation of the differential operator d
dx in the space of functions on the

interval (−π, π).

Solution:

Since domain and codomain coincide, the bases in both spaces are identical; the easiest and
most natural choice is the discrete Fourier basis 1, {cos nx, sin nx}∞

n=1. With this choice, using
(cos nx)′ = −n sin nx and (sin nx)′ = n cos nx, we find

d
dx



1
cos x
sin x

cos 2x
sin 2x

...


=



0
− sin x
cos x

−2 sin 2x
2 cos 2x

...


= MT



1
cos x
sin x

cos 2x
sin 2x

...


.

We can immediately see that the matrix representation ”M” takes the form

MT =



0 0 0 0 0 . . .
0 0 −1 0 0
0 1 0 0 0
0 0 0 0 −2
0 0 0 2 0
...

. . .


.

Matrix representation of the time-independent Schrödinger equation

Another common example is the matrix representation of the Schrödinger equation. Suppose we are
given an orthonormal basis {φi}∞

i=1 for the Hilbert space in which the operator Ĥ acts. By decomposing an
eigenstate ψ of the Schrödinger equation,

Ĥψ(x) = Eψ(x)

in the basis φj(x) as ψ = ∑j cjφj, we get the matrix form

∑
j

Hijcj = Eci , (3.3)

with
Hij = (φi, Ĥφj) =

∫
dx φi(x)∗Hφj(x) .

This is clearly a form of Eq. (3.2).
The result in Eq. (3.3) is obviously an infinite-dimensional matrix problem, and no easier to solve than

the original problem. Suppose, however, that we truncate both the sum over j and the set of coefficients
c to contain only N terms. This can then be used to find an approximation to the eigenvalues and eigen-
vectors. See the Mathematica notebook heisenberg.nb for an example how to apply this to real problems.

3.1.3 Adjoint operator and hermitian operators

You should be familiar with the Hermitian conjugate (also called adjoint) of a matrix, the generalisation
of transpose: The Hermitian conjugate of a matrix is the complex conjugate of its transpose,

(M†)ij = (Mji)∗, or M† = (MT)∗.

http://walet.phy.umist.ac.uk/MaMe/MMA/heisenberg.nb
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Figure 3.2: The definition of a matrix and its Hermitian conjugate

Thus (
0 i
i 0

)†
=
(

0 −i
−i 0

)
,

(
0 i
−i 0

)†
=
(

0 i
−i 0

)
.

We can also define the Hermitian conjugate of a column vector, if

v =

v1
...

vn

 , v† = (v∗1 , . . . , v∗n).

This allows us to write the inner product as a matrix product,

(w, v) = w†v.

The most useful definition of Hermitian conjugate, which will be generalised below, is through the inner
product:

The hermitian conjugate M† of a matrix M has the property that for any two vectors a and
b in the range and domain,

(a, Mb) = (M†a, b).

Thus, with a little algebra,

(a, Mb) = ∑
ij

a∗i Mijbj = ∑
ij

a∗i (M†
ji)
∗bj = ∑

ij
(M†

jiai)∗bj = (M†a, b), (3.4)

see Fig. 3.2. From the examples above, and the definition, we conclude that if M is an m× n matrix, M† is
an n×m one.

We now use our result (3.4) above for an operator, and define

∀a ∈ codomain, b ∈ domain : (a, Lb) = (L†a, b) = (b, L†a)∗

where the last two terms are identical, as follows from the basic properties of the scalar product, Eq. (2.2).
A linear operator L maps the domain onto the codomain; its adjoint L† maps the codomain back on to the
domain.

As can be gleamed from Fig. 3.3, we can also use a basis in both the domain and codomain to use the
matrix representation of linear operators (3.1,3.2), and find that the matrix representation of an operator
satisfies the same relations as that for a finite matrix,
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Figure 3.3: The definition of an operator and its Hermitian conjugate

Figure 3.4: A schematic representation of a self-adjoint operator.
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(L†)ik = (Lki)∗.

A final important definition is that of

A self-adjoint or hermitian operator L equals its adjoint,

L† = L.

Thus we also require that domain and codomain coincide, see Fig. 3.4.

3.2 Eigenvalue equations

We have all seen simple matrix eigenvalue problems; this is now generalised to linear operators, and we
shall first of all consider eigenvalue equations of the form

La = λa.

Theorem 3.1. For an Hermitian operator L,

1. the eigenvalues are real and

2. eigenvectors corresponding to different eigenvalues are orthogonal.

Proof. Let’s consider the first property first. Calculate

(a, La) = λ(a, a),

(L†a, a) = λ∗(a, a),

but Hermiticity says the left-hand sides are equal. Subtract both sides of the equations and find

0 = (λ− λ∗)(a, a).

Positivity of (a, a), ((a, a) ≥ 0 and is only 0 if a = 0) allows us to conclude that λ = λ∗.
For the second property we consider two cases. First assume there is a second solution to the eigen-

value problem of the form Lb = µb, with λ 6= µ, λ, µ ∈ R. Then, using Hermiticity we can show that we
have two expressions (obtained by having L act on a or L† = L on b) for

(b, La) = λ(b, a) = µ(b, a).

Taking the difference between the two right-hand sides, we find (λ − µ)(a, b) = 0, and since µ 6= λ,
(a, b) = 0.

This does not apply to the case when we have two different eigenvalues for the same eigenvalue
(degeneracy). There is no rule precluding (a, b) to be zero, just no requirement for it to be so. In that
case we can construct from the subspace of degenerate eigenvalues a set of vectors that are orthogonal,
using the procedures set out in the previous chapter, since any linear combination of the degenerate
eigenvectors still correspond to the same eigenvalue.

Example 3.4:

Find the eigenvalues and eigenvectors of the matrix (“diagonalise the matrix”)

M =

4 1 1
1 4 1
1 1 4
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Solution:

The eigenvalues can be found from
Me = λe.

This equation only has interesting (non-zero) solutions if the determinant of coefficients is
zero,

0 = det(M− λI)

= (4− λ)((4− λ)2 − 1)− 1((4− λ)− 1) + 1(1− (4− λ))

= (4− λ)((4− λ)2 − 3) + 2

= −λ3 + 12λ− 45λ + 54 .

A little guesswork shows that this can be factorized as

−(λ− 3)2(λ− 6) = 0.

The unique eigenvalue 6 has an eigenvector satisfying−2 1 1
1 −2 1
1 1 −2

 e = 0,

which has as normalised solution e3 =

1
1
1

 /
√

3. The degenerate eigenspace for λ = 3 has

eigenvectors satisfying 1 1 1
1 1 1
1 1 1

 e = 0,

which describes a plane through the origin, orthogonal to (1, 1, 1). We can find non-orthogonal
eigenvectors, e.g. (1, 1,−2) and (1, 0,−1), but we can use the Gramm-Schmidt procedure to
find orthonormal eigenvectors of the form e1 = (1, 1,−2)/

√
6 and e2 = (1,−1, 0)/

√
2. The

general eigenvector for eigenvalue 3 is then ae1 + be2.

This example shows the reality of the eigenfunctions, the orthogonality of the eigenvectors, etc.

Weight functions. For function spaces, one often meets the generalised eigenvalue equation

Ly(x) = λρ(x)y(x),

where L is a differential operator, ρ(x) is a real and positive “weight function”.

Theorem 3.2. For an operator L, Hermitian with respect to the ordinary inner product (u, v) =
∫

u(x)∗v(x) dx,
the eigenvalues are real and eigenvectors u(x), v(x) corresponding to different eigenvalues are “orthogonal with a
weight function ρ(x)”, i.e.

(u, v)ρ =
∫

dx ρ(x)u∗(x)v(x) = 0. (3.5)

3.2.1 Problems

1. Show that the definition (3.5) satisfies the conditions (2.2–2.4).
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3.3 Sturm-Liouville equations

There is a physically very important class of operators with a weight function. These occur in the so-called
Sturm-Liouville equations, which are eigenvalue equations of the form

Ly(x) = λρ(x)y(x),

where ρ(x) > 0 is a given real positive weight function and the operator L is of the special Sturm-Liouville
type,

L = − d
dx

(
p(x)

d
dx
·
)

+ q(x)

where p(x), q(x) are given real functions and p(x) is positive. The dot denotes the place the argument of
the operator must be inserted. Explicitly, using (3.3) and (3.3), we see that they are homogeneous second
order equations of the form

− d
dx

(
p(x)

d
dx

y(x)
)

+ q(x)y(x)− λρ(x)y(x) = 0,

or equivalently, expanding out the derivatives,

p(x)
d2y
dx2 +

dp
dx

dy
dx

− q(x)y(x) + λρ(x)y(x) = 0. (3.6)

Many equations can be put in S-L form by multiplying by a suitably chosen function α(x), which is
determined by requiring a differential equation of the form Eq. (3.6), see the next section.

3.3.1 How to bring an equation to Sturm-Liouville form

Given a general second order differential equation, that we suspect might be written as Sturm-Liouville
equation, how do we find out whether this is true?

We start from a “canonical form”. It is straightforward to rewrite any second order differential equa-
tion so that the coefficient of the second derivative is 1,

y′′(x) + α(x)y′(x) + β(x)y(x) + λτ(x)y(x) = 0,

so let us assume an equation of that form.
We shall show below that τ > 0 for a Sturm-Liouville equation. Suppose first that we are given the

function p(x) in the Sturm-Liouville operator. We can then multiply both sides of the equation with p,
and find

p(x)y′′(x) + p(x)α(x)y′(x) + p(x)β(x)y(x) + λp(x)τ(x)y(x) = 0.

If we compare this with equation (3.6) above we see that

p′(x) = α(x)p(x), q(x) = −β(x)p(x), ρ(x) = τ(x)p(x). (3.7)

If we do not know p, we can solve (3.7) for p(x),

d ln(p(x))
dx

= α(x),

p(x) = exp
(∫ x

α(x′)dx′
)

.

We have thus found the function p to bring it to Sturm-Liouville form. The function ρ = τp must be
positive, and thus since p is positive, τ must be positive.

There are many well-known examples in physics, see Table 3.1. Almost all cases we meet in physics
are Hermitian Sturm-Liouville operators. Some of these will be investigated further below, but first we
need a useful property of Sturm-Liouville operators
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Table 3.1: A few well-known examples of Sturm-Liouville problems that occur in mathematical physics

Name p(x) q(x) ρ(x) [a, b]
Legendre’s equation (1− x2) 0 1 [−1, 1]

Laguerre’s equation xe−x 0 e−x [0, ∞)
Hermite’s equation e−x2

0 e−x2
(−∞, ∞)

Chebychev’s equations (1− x2)1/2 0 (1− x2)−1/2 [−1, 1]
Bessel’s equation x −ν2/x x [0, R], R finite.
and many others.

3.3.2 A useful result

In general, one can show that for any two real functions u(x), v(x) defined for x ∈ [a, b], and a Sturm-
Liouville operator L also defined on [a, b],

vLu− (Lv)u = −v(x)
d

dx

(
p(x)

d
dx

u(x)
)

+ v(x)q(x)u(x)

+
[

d
dx

(
p(x)

d
dx

v(x)
)]

u(x)− v(x)q(x)u(x)

= −v(pu′)′ + u(pv′)′

=
[
−vpu′ + upv′

]′. (3.8)

After integration we thus conclude that∫ b

a
dx [vLu− (Lv)u] = (v, Lu)− (u, Lv)

=
[
p(uv′ − vu′)

]b
a. (3.9)

3.3.3 Hermitian Sturm Liouville operators

From the useful identity (3.9) we can draw some interesting conclusions about Hermitian Sturm-Liouville
operators. By definition, an operator L is Hermitian if∫ b

a
dx [vLu− (Lv)u] = 0

for any two vectors u, v in the space. Hence, from this and (3.9), a S-L operator is Hermitian if and only if
the boundary conditions at a and b are such that[

p(uv′ − vu′)
]b

a = p(b)W(b)− p(a)W(a),

where the Wronskian W is defined as

W(x) =
(

u(x) v(x)
u′(x) v′(x)

)
= u′(x)v(x)− u(x)v′(x).

In mathematical physics the domain is often delimited by points a and b where p(a) = p(b) = 0. If we
then add a boundary condition that w(x)p(x) and w′(x)p(x) are finite (or a specific finite number) as
x → a, b for all solutions w(x), the operator is Hermitian.

Note that such boundary conditions forbid “second solutions” in general – see next section.



22 CHAPTER 3. OPERATORS, EIGENVECTORS AND EIGENVALUES

3.3.4 Second solutions, singularities

Since a Sturm-Liouville equation is by definition second order, there are two independent solutions. If we
have already obtained one (finite) solution u(x) for a given λ, we would like to know the second solution,
which we call v(x). Thus

Lu(x) + λρu(x) = 0, (3.10)
Lv(x) + λρv(x) = 0. (3.11)

We now multiply (3.10) by v(x) and (3.11) by u(x), and subtract:

uLv− vLu = 0

or, using the result above

d
dx
[
puv′ − pvu′

]
= 0.

Hence
puv′ − pvu′ = c ,

i.e.,

uv′ − vu′ =
c

p(x)
.

Since u is known, this is differential equation for v (first order!). The technique applicable is the integrating
factor or substitution of v = uw,

uu′w + uuw′ − uu′w = c/p =⇒

w′ =
c

pu2 =⇒

w(x) = c
∫ x 1

p(x′)u(x′)2 dx′ .

We can of course add a constant to w, but that would just add a component proportionsl to u into the
solution, which we already know is allowed. We can also take c = 1, since the multiplication with c is a
trivial reflection of linearity.

These solutions do not exist (i.e., diverge) for points such that p(x) = 0, which are called singular
points. This may sound like a superficial remark, but almost always the interval [a, b], on which the
Sturm-Liouville operator is defined, is delimited by such special singular points, and p(a) = p(b) = 0!

Consider a second order differential equation

y′′(x) + P(x)y′(x) + Q(x)y(x) = 0.

If at a point x = x0 P(x) or Q(x) diverges, but (x− x0)P(x) and (x− x0)2Q(x) are finite,
x0 is called a regular singular point. If P(x) diverges faster than 1/(x− x0) and/or Q(x)

diverges faster than 1/(x− x0)2 we speak of an irregular singular point.

3.3.5 Eigenvectors and eigenvalues

For Hermitian S-L operators, we state witout proof that:
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1. The eigenvalues are real and non-degenerate, i.e., there exists only one finite solution un(x) for each
eigenvalue λn.

Since the S-L equation is real and its solution un(x) for any eigenvalue is unique, this implies
un(x) = u∗n(x) apart from a multiplicative constant. Hence one can (and we will) always choose
real eigenfunctions.

2. There exists a lowest eigenvalue λ0 (this relies on the positivity of p(x)) and the sequence

λ0 < λ1 < . . . < λn < . . . .

is unbounded, λn → ∞ as n → ∞ .

3. The number of nodes in the n-th eigenvector, if the corresponding eigenvalues are ordered as above,
is exactly equal to n.

4. Eigenfunctions u, v with u 6= v are orthogonal with weight function ρ(x),

(u, v)ρ =
∫ b

a
dx ρ(x)u∗(x)v(x) = 0 .

5. The eigenfunctions
u1(x), u2(x), . . . , un(x), . . .

form a complete basis set of functions on the interval [a, b] satisfying the boundary conditions. (Proof
given in the Variational Calculus section, but not necessarily discussed in class.)

3.4 Series solutions and orthogonal polynomials

You should all be familiar with this from the Legendre polynomials discussed in the second year math
course (or see http://walet.phy.umist.ac.uk/2C1).

These functions arise naturally in the problem of the one-dimensional quantum-mechanical harmonic
oscillator.

3.4.1 The quantum-mechanical oscillator and Hermite polynomials

The quantum-mechanical Harmonic oscillator has the time independent Schrödinger equation

− h̄2

2m
d2

dx2 ψ(x) + 1
2 mω2x2ψ(x) = Eψ(x).

Solutions to such equations are usually required to be normalisable,∫ ∞

−∞
|ψ2(x)|dx < ∞,

i.e., ψ ∈ L2(R).
Mathematical functions other than simple polynomials always act on pure numbers (since otherwise

the result of the function would contain a mixture of quantities of different dimensions, as we can see by
Taylor expanding). This holds here as well, and we must be able to define “dimensionless variables”. We
combine all the parameters of the problem to define two scales, a harmonic oscillator length

b =
(

h̄
mω

)1/2

http://walet.phy.umist.ac.uk/2C1
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and a scale for energy Eω = h̄ω. We can then define a dimensionless coordinate and energy

z = x/b, λ = E/Eω.

In these variables the Schrödinger equation reads

d2

dz2 ψ(z) + (2λ− z2)ψ(z) = 0. (3.12)

Functions in L2(R) must decay sufficiently fast at infinity: not all solutions to (3.12) have that property!
Look at large z, where λ � z2, and we find that a function of the form ψ(z) = exp(±z2/2) satisfies exactly
the equation

d2

dz2 ψ(z)− z2ψ(z) = 0.

for large z. Since we have neglected a constant to obtain this result, we can conclude that any behaviour
of the form za exp(±z2/2) is allowed (since the pre-factor gives subleading terms–please check). Since the
wave function must vanish at infinity, we find the only acceptable option is a wave function of the form

ψ(z) = f (z) exp(−z2/2),

where f (z) does not grow faster than a power as z → ∞.
The easiest thing to do is substitute this into (3.12), and find an equation for f ,

f ′′(z)− 2z f ′(z) + (2λ− 1) f (z) = 0. (3.13)

This is of Sturm-Liouville form; actually we can multiply if with p(z) = e−z2
to find

[exp(−z2) f ′(z)]′ + (2λ− 1) exp(−z2) f (z) = 0. (3.14)

This is a Sturm-Liouville problem, with eigenvalues 2λ − 1. The points z = ±∞ are singular, since p
vanishes. Thus [a, b] is actually (−∞, ∞), as we would expect.

So how do we tackle Hermite’s equation (3.13)? The technique should be familiar: we substitute a
Taylor series around z = 0,

f (z) =
∞

∑
n=0

cnzn,

and collect the coefficient of terms containing the same power of z, and equate all these coefficients to
zero

(l + 2)(l + 1)cl+2 − (2l − (2λ− 1))cl = 0.

This recurrence relation can be used to bootstrap our way up from c0 or c1. It never terminates, unless
(2λ− 1) is an even integer. It must terminate to have the correct behaviour at infinity (like a power). We
are thus only interested in even or odd polynomials, and we only have non-zero c’s for the odd part (if
λ− 1/2 is odd) or even part (when λ− 1/2 is even).

If we call λ = n + 1/2, with n integer, the first solution is H0(z) = 1, H1(z) = z, H2(z) = 1− z2, . . . .
These are orthogonal with respect to the weighted inner product∫ ∞

−∞
exp(−z2)Hn(z)Hm(z) dz = knδnm.

This shows that the eigenfunctions of the Harmonic oscillator are all of the form

ψn(x) = exp(−x2/(2b2))Hn(x/b)

with eigenvalue (n + 1
2 )h̄ω.
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3.4.2 Legendre polynomials

A differential equation that you have seen a few times before, is Legendre’s equation,[
(1− x2)y′(x)

]′
+ λy(x) = 0. (3.15)

Clearly x = ±1 are singular points of this equation, which coincides with the fact that in most physically
relevant situations x = cos θ, which only ranges from −1 to 1. As usual, we substitute a power series
around the regular point x = 0, y(x) = ∑n cnxn. From the recurrence relation for the coefficients,

cm+2 =
m(m + 1)− λ

(m + 1)(m + 2)
cm,

we see that the solutions are terminating (i.e., polynomials) if λ = n(n + 1) for n ∈ N. These polynomials
are denoted by Pn(x). Solutions for other values of λ diverge at x = 1 or x = −1.

Since Eq. (3.15) is of Sturm Liouville form, the polynomials are orthogonal,∫ 1

−1
Pn(x)Pm(x) dx = 0 if n 6= m.

As for all linear equations, the Pn’s are defined up to a constant. This is fixed by requiring Pn(1) = 1.

Generating function

A common technique in mathematical physics is to combine all the solutions in a single object, called a
“generating function”, in this case

f (x, t) = ∑
n

tnPn(x).

We shall now prove that

(1− 2tx + t2)−1/2 = ∑
n

tnPn(x), (t ∈ [−1, 1]), (3.16)

and show that we can use this to prove a multitude of interesting relations on the way. The calculation
is rather lengthy, so keep in mind where we do wish to end up: The coefficients of tn in Eq. (3.16) satisfy
Eq. (3.15).

1. First we differentiate (3.16) w.r.t. to x and t,

t(1− 2tx + t2)−3/2 = ∑
n

tnP′n(x), (3.17)

(x− t)(1− 2tx + t2)−3/2 = ∑
n

ntn−1Pn(x). (3.18)

2. We then replace (1− 2tx + t2)−1/2 on the l.h.s. of (3.17) by a ∑n tnPn(x), multiplying both sides with
(1− 2tx + t2),

∑ tn+1Pn(x) = ∑
n

P′n(x)(tn − 2xtn+1 + tn+2).

Equating coefficients of the same power in t, we find

Pn(x) = P′n+1(x)− 2xP′n(x) + P′n−1(x). (3.19)

3. Since (x − t) times the l.h.s. of (3.17) equals t times the l.h.s. of (3.18), we can also equate the
right-hand sides,

(x− t) ∑
n

tnP′n(x) = t ∑
n

ntn−1Pn(x),

from which we conclude that
xP′n(x)− P′n−1(x) = nPn(x). (3.20)
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4. Combine (3.19) with (3.20) to find

(n + 1)Pn(x) = P′n+1(x)− xP′n(x). (3.21)

5. Let n go to n− 1 in (3.21), and subtract (3.20) times x to find

(1− x2)P′n(x) = n (Pn−1(x)− xPn(x)) .

6. Differentiate this last relation,[
(1− x2)P′n(x)

]′
= nP′n−1(x)− nPn(x)− nxP′n(x)

= −n(n + 1)Pn(x),

where we have applied (3.20) one more time.

This obviously completes the proof.
We can now easily convince ourselves that the normalisation of the Pn’s derived from the generating

function is correct,

f (1, t) = 1/(1− t) = ∑
n

tn = ∑
n

tnPn(1) ,

i.e., Pn(1) = 1 as required.

This also shows why t should be lees than 1; the expansion of 1/(1− t) has radius of con-
vergence equal to 1.

Expansion of |r1 − r2|−1.

One of the simplest physical applications is the expansion of |r1 − r2|−1 in orthogonal functions of the
angle between the two vectors.

Let us first assume r2 > r1,

|r1 − r2|−1 =
1√

r2
1 + r2

2 − 2r1r2 cos θ

=
1

r2
√

(r1/r2)2 + 1− 2r1/r2 cos θ

=
1
r2

∑
n

(
r1

r2

)n
Pn(cos θ), (3.22)

where we have used the generating function with t = r1/r2.
Since the expression is symmetric between r1 and r2, we find the general result

1
|r1 − r2|

= ∑
n

rn
<

rn+1
>

Pn(cos θ),

where r<,> is the smaller (larger) or r1 and r2.
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Figure 3.5: A homogeneously charged ring in the xy plane.

Normalisation

When developing a general “Legendre series”, f (x) = ∑n cnPn(x), we need to know the normalisation of
Pn(x). This can be obtained from the generating function, using orthogonality,

∫ 1

−1

(
∑
n

tnPn(x)

)2

dx = ∑
n

t2n
∫ 1

−1
Pn(x)2 dx.

Substituting the generating function, we find∫ 1

−1
(1− 2xt + t2)−1 dx =

1
t

ln
(

1 + t
1− t

)
=

1
t

∞

∑
m=1

1
m

tm − 1
m

(−t)m

= ∑
m=2n+1

2
2n + 1

t2n. (3.23)

Thus ∫ 1

−1
Pn(x)2 dx =

2
2n + 1

.

Electrostatic potential due to a ring of charge

As a final example we discuss the case of a homogeneously charged ring of radius a in the xy plane, see
fig. 3.5.

The equation to solve is ∆V = 0, apart from on the ring itself. The problem can easily be tackled
by separation of variables in polar coordinates, and we see from symmetry that the potential can only
depend on r and θ. The angular equation gives Legendre polynomials, and the radial equation is trivial
to solve (it has a power of r as solution), resulting in the expansion

V =
∞

∑
n=0

cn
an

rn+1 Pn(cos θ). (3.24)

where we have imposed the boundary condition V(∞) = 0. Actually, we can be slightly more specific
and use the fact that from far away the ring looks like a point charge, V → q/(4πε0r) for r → ∞.
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Now how do we determine the coefficients cn in (3.24)? The simplest technique is based on a calcu-
lation of the potential on the positive z axis. You should have derived the result before (it is a standard
example in basic electrostatics)

V(z) =
q

4πε0
√

z2 + a2
.

This can easily be expanded in powers of a/z, and if we use
√

z2 = z we get

V(z) =
q

4πε0z

∞

∑
m=0

(−1)m (2m− 1)!!
2mm!

( a
z

)2m
.

Since on the positive z axis r = z and Pn(cos θ) = Pn(1) = 1, we conclude that

V(r, θ) =
q

4πε0z

∞

∑
m=0

(−1)m (2m− 1)!!
2mm!

( a
r

)2m
P2m(cos θ).

3.4.3 Bessel functions and the circular drum

Bessel’s equation of order ν takes the form

x2y′′(x) + x y′(x) + (x2 − ν2)y(x) = 0.

This equation has a regular singular point at x = 0, and the point x = ∞ is regular. It is thus not of
Sturm-Liouville form, without additional boundary conditions (see below).

The solutions can be found in many places: we substitute a generalised power series around x = 0,

y(x) = xγ
∞

∑
n=0

cnxn.

From the index equation (lowest power in x) we find γ = ±ν; this leads to two independent solutions if
ν is not a half-integer. The recurrence relations are

cn =
−1

n(n± 2ν)
cn−2.

The main result are the Bessel functions (regular solutions) for ν ≥ 0,

Jν(x) =
∞

∑
k=0

(−1)k

k!Γ(ν + k + 1)

( x
2

)ν+2k
.

The simplest use of these regular solutions is for example in the caculation of the modes in a circular
drum. With u(r, φ) = R(r)eimφ we find that

r2R′′(r) + rR′(r) + λr2R(r)−m2R(r) = 0, (3.25)

with the explicit boundary condition y(a) = 0 and the implicit boundary condition y(0) is finite. With
these conditions we have an Sturm-Liouville problem!

We can move λ into the variable by using the transformation

x =
√

λr, R(r) = y(x),

which turns the equation into Bessel’s equation of order m. Thus

y = cJm(x), R(r) = cJm(
√

λr),



3.4. SERIES SOLUTIONS AND ORTHOGONAL POLYNOMIALS 29

Table 3.2: The eigenvalues as a function of m and n, divided by the lowest one.
m = 0 m = 1 m = 2 m = 3

n = 1 1. 2.5387339670887545 4.5605686201597395 7.038761346947694
n = 2 5.2689404316052215 8.510612772447574 12.25103245391653 16.47492803352439
n = 3 12.949091948711432 17.89661521491159 23.347115194125884 29.291025900157134
n = 4 24.042160379641803 30.696015647982048 37.85459961832423 45.51139388242945
n = 5 38.5483546692039 46.90868597534144 55.77464019991307 65.14149844841049
n = 6 56.46772471517244 66.53458968257806 77.10759560464034 88.18317085819912
n = 7 77.80028714289776 89.5737132318928 101.85360724822897 114.63717276642296
n = 8 102.54604874469128 116.02605067898523 130.01274014487907 144.50386866809274
n = 9 130.70501270873422 145.89159908441692 161.58502760864766 177.78345128038563
n = 10 162.2771806904681 179.1703568603581 196.57048815295988 214.47603043403043

with the boundary condition
Jm(

√
λa) = 0.

If we are given the zeroes xn of Jm(x), we find that

λn =
( xn

a

)2
.

We tabulate the zeroes of Jm(x) in Tab. 3.2.
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Chapter 4

Green functions

4.1 General properties

The Green function technique is used to solve differential equations of the form

(Lxu)(x) = f (x) plus boundary conditions (4.1)

where Lx is a linear hermitian operator with specified boundary conditions and f (x) is a given “source
term”. We shall normally suppress the subscript x on L.

The solution of (4.1) can always be written as

u(x) =
∫

dx′ G(x, x′) f (x′), (4.2)

where the Green function G(x, x′) is defined by

LG(x, x′) = δ(x− x′) plus boundary conditions, (4.3)

where L acts on x, but not on x′. We also have the same boundary conditions as before! The proof is
straightforward:

L
∫

dx′ G(x, x′) f (x′) =
∫

dx′ LG(x, x′) f (x′) =
∫

dx′ δ(x− x′) f (x′) = f (x). (4.4)

Note by solving this equation, one obtains the solution of (4.1) for all possible f (x), and thus it is very
useful technique to solve inhomogeneous equations where the right-hand side takes on many different
forms.

4.1.1 First example: Electrostatics

In your physics courses you have already been exposed to a Green function, without it ever being made
explicit. The problem of interest is the determination of the electrostatic potential Φ(x) for a static charge
distribution ρ(x). From ∇ · E = ρ/ε0 and E = −∇Φ we can easily show that

∇2Φ(x) = −ρ(x)/ε0, (4.5)

with the boundary condition that Φ(x) → 0 as |x| → ∞.
For a point charge q at position x′, Eq. (4.5) becomes

∇2Φ(x) = −(q/ε0)δ(3)(x− x′).

31
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[The notation δ(3)(x) stands for the 3D δ function δ(x)δ(y)δ(z).] We all know the solution, which is
Coulomb’s law,

Φ(x) =
q

4πε0

1
|x− x′| .

In other words, the Green function G which solves

∇2G(x, x′) = δ(3)(x− x′)

is

G(x, x′) = − 1
4π

1
|x− x′| . (4.6)

This leads to the well known superposition principle for a general charge distribution,

Φ(x) =
1

4πε0

∫
d3x′

ρ(x′)
|x− x′| .

This is usually derived using the statement that each “small charge” δQ(x′) = d3x′ρ(x′) contributes
1

4πε0

δQ(x′)
|x−x′ | to the potential Φ, and we simply superimpose all these contributions.

4.1.2 The eigenstate method

For operators where we know the eigenvalues and eigenfunctions, one can easily show that the Green
functions can be written in the form

G(x, x′) = ∑
n

1
λn

un(x)un(x′)∗.

This relies on the fact that un(x) is a complete and orthonormal set of eigenfunctions of L, obtained by
solving

Lun(x) = λnun(x), (4.7)

where we have made the assumption that there are no zero eigenvalues.
If there are zero eigenvalues–and many important physical problems have “zero modes”–we have to

work harder. Let us look at the case of a single zero eigenvalue, λ0 = 0. The easiest way to analyse this
problem is to decompose u(x) and f (x) in the eigenfunctions,

u(x) = ∑
n

cnun(x),

f (x) = ∑
n

dnun(x). (4.8)

We know that dn = (un, f ), etc.
Now substitute (4.8) into (4.7) and find

∑
n

un(x)cnλn = ∑
n

un(x)dn.

Linear independence of the set un gives

cnλn = dn = (un, f ),

and of most interest
0 = c0λ0 = d0. (4.9)
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Clearly this equation only has a solution if d0 = 0. In other words we must require that (u0, f ) = 0, and
thus the driving term f is orthogonal to the zero mode. In that case, c0 is not determined at all, and we
have the family of solutions

u(x) = ∑
n

cnun(x) = c0u0(x) +
∞

∑
n=1

dn

λn
un(x)

= c0u0(x) +
∞

∑
n=1

1
λn

∫
un(x)un(x′) f (x′)dx′

=
∫

G(x, x′) f (x′)dx′ .

Here

G(x, x′) = cu0(x) +
∞

∑
n=1

1
λn

∫
un(x)un(x′) ,

with
c = c0/

∫
f (x) dx .

The driven vibrating string

Consider a string with fixed endpoints (such as a violin string) driven by an oscillating position-dependent
external force density,

F = F(x) sin ωt .

If we now consider a small section of the string, see Fig. 4.1, and assume small displacements from equi-
librium, we can use the fact that the tension in the string and its density are constant, and we can use the
tranvserse component of Newton’s equation for teh resulting transverse waves,

ρdx︸︷︷︸
mass

ü = T
du
dx

(x + dx)︸ ︷︷ ︸
force at end

− T
du
dx

(x)︸ ︷︷ ︸
force at beginning

− Fdx︸︷︷︸
external force

Using a Taylor series expansion of u and taking the limit dx ↓ 0, we find

ρ
∂2u
∂t2 = T

∂2u
∂x2 − F(x) sin ωt.

We know how such a problem works; there is a transient period, after which a steady state oscillations
is reached at the driving frequency, u(x, t) = v(x) sin ωt, i.e.,

∂2u
∂t2 = −ω2u.

Using this relation, we obtain a complicated equation for the steady state amplitude v(x),

d2v
dx2 +

ρω2

T
v =

F(x)
T

.

This can be simplified by writing k2 = ρω2/T and f (x) = F(x)/T,

v′′ + k2v = f (x), (4.10)

with boundary conditions v = 0 at x = 0 and x = L.
Now follow the eigenstate method for Green functions. First we must solve

vn
′′ + k2vn = λnvn.
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Figure 4.1: The balance of forces in a driven string

If we write this as vn
′′ = (λn − k2)vn, we recognise a problem of the simple form y′′ = ky, which is solved

by functions that are either oscillatory or exponential. The boundary conditions only allow for solutions
of the form vn =

√
2/L sin knx with kn = nπ/L. From this we conclude that λn = k2 − k2

n, and thus

G(x, x′) =
∞

∑
n=1

2
L

sin knx sin knx′

k2 − k2
n

.

The solution becomes

u(x) =
∫ L

0
G(x, x′) f (x′)dx′ = ∑

n

2dn

L
sin knx
k2 − k2

n
,

where

dn =
∫ L

0
f (x)

√
2/L sin knx dx.

Clearly, we have not discussed the case where takes on the values k = km, for any integer m ≥ 1.
From the discussion before we see that as k approaches such a point the problem becomes more and more
sensitive to components in f of the mth mode. This is the situation of resonance, such as the wolf-tone of
string instrument.

4.1.3 The continuity method

In this method for solving second order equations of the form[
d2

dx2 + α(x)
d

dx
+ β(x)

]
G(x, x′) = δ(x− x′)

one

(a) solves (4.1.3) for fixed x in the regions x < x′ and x > x′, where it reduces to

LG(x, x′) = 0 plus boundary conditions .

(b) fixes the remaining unknown functions of x′ by using the continuity of G(x, x′) at x = x′, and
the discontinuity of the derivative, which is easily shown to be the inverse of the coefficient of the
second derivative in the ODE,

d
dx

G(x′ + ε, x′)− d
dx

G(x′ − ε, x′) = 1 ,
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see below for an explanation.

Let us illustrate the method for the example of the driven vibrating string discussed above,(
d2

dx2 + k2
)

u(x) = f (x),

and (
d2

dx2 + k2
)

G(x, x′) = δ(x− x′), (4.11)

with boundary conditions G(x, x′) = 0 if x = 0, L. This can also be given a physical interpretation as the
effect a point force acting at x = x′.

We first solve the problem
∂2

∂x2 G(x, x′) + k2G(x, x′) = 0.

in the two regions x < x′, x > x′, which differ in boundary conditions,

For x < x′

G(x, x′) = A(x′) sin(kx)
since G(0, x′) = 0 falls within this domain.

For x > x′

G(x, x′) = N(x′) sin(k(L− x))
since G(L, x′) = 0 falls within this domain.

We now require that G(x, x′) is continuous in x at x = x′ (a point force doesn’t break the string), and
that ∂xG(x, x′) is discontinuous at x = x′ (since a point force “kinks” the string).

To find this discontinuity, we integrate (4.11) over x around x′ (where ε is a very small number)∫ x′+ε

x′−ε

(
d2

dx2 + k2
)

G(x, x′) dx =
∫ x′+ε

x′−ε
δ(x− x′) dx,

or

−
[

∂

∂x
G(x, x′)

]x′+ε

x′−ε

+ k2G(x, x′)2ε = 1.

In the limit ε → 0 we find that

−
(

dG
dx

)
x′+ε

+
(

dG
dx

)
x′−ε

= 1.

From the form of G derived above, we conclude that

A(x′) sin kx′ = B(x′) sin k(L− x′)
−B(x′)k cos k(L− x′)− A(x′)k cos kx′ = 1 (4.12)

with as solution (as can be checked using the formula sin A cos B + cos A sin B = sin(A + B))

A(x′) = − sin k(L− x′)
k sin kL

and B(x′) = − sin kx′

k sin kL
.

Taking this together we find

G(x, x′) =


− sin kx sin k(L− x′)

k sin kL
x < x′

− sin kx′ sin k(L− x)
k sin kL

x > x′
.

Note the symmetry under interchange of x and x′, which is a common feature on Green functions.
As a challenge problem, you may wish to check that this form is the same as the one derived by the

eigenfunction method in the previous section (see also the mathematica based coursework).
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4.2 Quantum mechanical scattering

We consider scattering from a finite range potential, which can be expressed in the more precise mathe-
matical relation rV(r) → 0 as r → ∞. We use the “time-independent approach”, (see Mandl, Quantum
Mechanics, Chapter 11).

The idea is that a beam of particles, that is not very dense so that they don’t significantly interact which
each other, impinges on a target described by the the potential V(r). If we observe the particles far away,
we are really interested in their energy which must be positive for scattering states. Thus we write

ψ(r, t) = φ(r)e−iEt/h̄ ,

where φ satisfies the time-independent Schrödinger equation

− h̄2

2m
∇2φ(r) + V(r)φ(r) = Eφ(r).

For positive energy we introduce a wave number k, E = h̄2k2/(2m), and find

(∇2 + k2)φ(r) =
2m
h̄2 V(r)φ(r) = ρ(r).

Here we replaced the right-hand side temporarily by an independent function, for reasons that will be-
come apparent below.

As usual we still need to determine the boundary conditions. We have two processes that describe
those: there is an incoming beam that outside the range of interaction becomes a plane wave, φ(r) → eikz,
and we do have the scattered particles, which are a result of the interaction with the potential. These are
most naturally described in terms of spherical waves.

Spherical waves are solutions to the radial part of the Laplace operator,

− 1
r2

d
dr

r2 d
dr

f (r) = k2 f (r).

Solutions are e±ikr

r . Using the radial part of the momentum operator pr = er
h̄
i

d
dr , we find that

the plus sign in the exponent corresponds to outward travelling ways; the minus sign is thus
for an incoming wave.

Outgoing spherical waves are of the form

f (θ, φ)
eikr

r
, r large ,

so we have the “asymptotic” boundary condition

φ(r) → eikz + f (θ, φ)
eikr

r
for r → ∞ .

Also, the scattering amplitude f (θ, φ) goes to zero as V goes to zero.
If we ignore the fact that ρ depends on φ (for the time being!) and write φ(r) = eikz + χ(r), we find we

have to solve the equation
(∇2 + k2)χ(r) = ρ(r),

subject to the boundary condition

χ(r) → f (θ, φ)
eikr

r
for r → ∞.



4.2. QUANTUM MECHANICAL SCATTERING 37

Solve this by the Green’s function method,

(∇2 + k2)G(r, r′) = δ(r − r′) ,

or using translational invariance,

(∇2 + k2)G(r) = δ(r) .

Actually, since we know the solution to

∇2G0(r) = δ(r)

is

G0 = − 1
4π

1
r

,

we know that the G must approach this solution for r ↓ 0. With the fact that

(∇2 + k2)
e±ikr

r
= 0

for r 6= 0, and that the boundary conditions require a plus sign in the exponent, we conclude that

G(r, r′) = − 1
4π

eik|r−r′ |

|r − r′| .

Using Stoke’s theorem, it is not hard to show that

∫
sphere

dV (∇2 + k2)
eikr

r
=
∫

sphere dS ·∇
∫

sphere +k2
∫

sphere dV eikr

r

= 4πR2
[

d
dr

eikr

r

]
r=R

+ k24π
∫ R

0 eikrr dr

= 4πeikR(ikR− 1) + 4π
(
−1− eikR(ikR− 1)

)
= −4π.

This also shows we really have a δ function.

We thus find, substituting the solution for χ and its relation to φ,

φ(r) = eikz +
∫

d3r′G(r, r′)ρ(r′).

If we also remember how ρ is related to φ, we get (the coordinate representation of) the integral equation
for scattering,

φ(r) = eikz +
2m
h̄2

∫
d3r′G(r, r′)V(r′)φ(r′) . (4.13)

This equation is called the Lipmann-Schwinger equation.
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The Born approximation

One way to tackle the scattering problem for a weak potential is to solve the problem by iteration, i.e.,
each time a φ appears we replace it by the right-hand side of (4.13). This results in the equation

φ(r) = eikz +
2m
h̄2

∫
d3r′G(r, r′)V(r′)eikz′ +(

2m
h̄2

)2 ∫
d3r′d3r′′G(r, r′)V(r′)G(r′, r′′)V(r′′)eikz′′ + . . .

For weak potentials we can truncate at first order:

φ(r) = eikz − m
2πh̄2

∫
d3r′

eik|r−r′ |

|r − r′|V(r′)eikz′ .

To extract f (θ, φ) we only need to know the behaviour for large r. Write k = kẑ, kz = k · r. Also
k′ ≡ k(r/r). For r � r′,

|r − r′| ≈ r
[
1− r · r′/r2 + . . .

]
so

φ(r) → eikz + f (θ, φ)
eikr

r
,

with
f (θ, φ) = − m

2πh̄2

∫
d3r′V(r′)ei(k−k′)·r .

This is called the Born approximation.
This is a good approximation in electron scattering from atoms, for example.

4.3 Time-dependent wave equation

In electromagnetism, you may have met the equations for the scalar potential Φ and vector potential A,
which in free space are of the form

�Φ = 0, �A = 0, where � =
1
c2

∂2

∂t2 −∇2.

These equation are satisfied for the “gauge choice” ∇ · A = 0, the Coulomb or radiation gauge.
As usual we can analyse what happens with external charge and current distributions, where the

potentials satisfy

�Φ =
ρ(r, t)

ε0
, �A = µ0j(r, t). (4.14)

Since we would like to know what happens for arbitrary sources, we are immediately led to the study
of the Green function for the D’Alembertian or wave operator �,

�G(r, t; r′, t) = δ(r − r′)δ(t− t′).

The boundary conditions are

1. that the potentials should go to zero far from sources, G(r, t; r′, t) → 0 as r → ∞.

2. that the effect of a source always occurs after its cause (causality) G(r, t; r′, t) = 0 if t < t′.
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For Galilean invariant problems, where we are free to change our origin in space and time, it is simple to
show that the Green function only depends on (r − r′) and t− t′ ,

G(r, t; r′, t) = G(r − r′, t− t′) .

To obtain the functional form of G it is enough to solve for r′ = 0, t′ = 0, i.e.(
1
c2

∂2

∂t2 −∇2
)

G(r, t) = δ(r)δ(t). (4.15)

4.3.1 Solution for the Green function by Fourier transforms

This standard method for time dependent wave equations is in several steps: First define the Fourier
transform of G

It is easier to use the asymmetric definition of the Fourier and inverse Fourier transform, so
that is what we shall use here.

G̃(k, ω) =
∫

d3r
∫

dt G(r, t) exp[−i(k · r −ωt)] ,

G(r, t) =
∫ d3k

(2π)3

∫ dω

2π
G̃(k, ω) exp[i(k · r −ωt)] , (4.16)

δ(r)δ(t) =
∫ d3k

(2π)3

∫ dω

2π
exp[i(k · r −ωt)] ,

and solve for the Fourier transform G̃(k, ω) by substituting the second of these relations into Eq. (4.15):
This equation becomes(

1
c2

∂2

∂t2 −∇2
)

G(r, t) =
∫ d3k

(2π)3

∫ dω

2π
G̃(k, ω)

(
−ω2

c2 + k2
)

exp[i(k · r −ωt)]

=
∫ d3k

(2π)3

∫ dω

2π
exp[i(k · r −ωt)] .

If we now equate the integrands, we find that

G̃(k, ω)
(
−ω2

c2 + k2
)

= 1 ,

G̃(k, ω) =
−c2

ω2 − c2k2 .

We now substitute G̃(k, ω) back into (4.16)

G(r, t) = −c2
∫ d3k

(2π)3

∫ dω

2π

exp[i(k · r −ωt)]
ω2 − c2k2 . (4.17)

Integration over Euler angles

The d3k part of the integral (4.17) is of the generic form

I =
∫

d3k eik·r f (k2)
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Integrals of this type can be dealt with in a standard way: We are free to choose the k3 axis to our benefit,
since we integrate over all k, and this preferred direction makes no difference to the value of the integral.
Thus, we choose the k3-axis parallel to r, and find

I =
∫

k2dk sin θdθ dφ eikr cos θ f (k2)

= 2π
∫ ∞

0
k2dk

[
−eikr cos θ

ikr

]π

0

f (k2)

= 2π
∫ ∞

0

kdk
ir

[
eikr − e−ikr

]
f (k2)

= 2π
∫ ∞

−∞

kdk
ir

eikr f (k2) .

Note the trick used to transform the penultimate line into the last one: we change the second term in
square brackets into an integral over (−∞, 0].

We can now apply this simplification to (4.17) to find

G(r, t) = − c2

(2π)2ir

∫ ∞

−∞
kdk

∫ ∞

−∞

dω

2π

exp[i(kr−ωt)]
ω2 − c2k2 . (4.18)

We now tackle the ω integral, ∫ ∞

−∞

dω

2π

e−iωt

ω2 − c2k2 . (4.19)

The problem with this integrand is that we have poles at ω = ±ck on the real axis, and we have to inte-
grand around these in some way. Here the boundary conditions enter. We shall use contour integration by
closing off the integration contour by a semicircle in the complex ω plane. The position of the semicircle
will be different for positive and negative t: Look at

ω = Reiφ,

where R is the radius of the semicircle (which we shall take to infinity), and φ is the variable that describes
the movement along the semicircle. We find that

exp[−iωt] = exp[−iRt cos φ] exp[Rt sin φ].

Since we want to add a semicircle without changing the integral, we must require that

exp[Rt sin φ] → 0 as R → ∞,

so that no contribution is made to the integral. This occurs if t sin φ < 0. Thus, if t < 0, we close the
contour in the upper half plane, and if t > 0 in the lower one, see Fig. 4.2.

Now we have turned our ω integral into a contour integral, we need to decide how to deal with the
poles, which lie on the real acis. Our time boundary condition (causality) states that G = 0 if t < 0, and
thus we want to move the poles to just below the contour, as in the second part of Fig. 4.2, or by shifting
the integration up by an infinitesimal amount above the real axis (these two ways of doing the integral
are equivalent). The integral for t > 0 can then be done by residues, since we have two poles inside a
closed contour. Note that the orientation of the contour is clockwise, and we just have a minus sign in the
residue theorem, ∫ ∞

−∞

dω

2π

e−iωt

ω2 − c2k2 =
∮ dz

2π

e−izt

(z− ck)(z + ck)
= −2πi(R+ + R−) .

Here R± is the residue of the poles (the “strength” of the pole),

R+ =
1

2π

e−ickt

2ck
, R− =

1
2π

e+ickt

−2ck
,
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Figure 4.2: The contours used in the ω integral (4.19).

and we thus find that ∫ ∞

−∞

dω

2π

e−iωt

ω2 − c2k2 = − i
2ck

(
e−ickt − eickt

)
.

If we substitute this into (4.18), we find that (t > 0!)

G(r, t) =
c

(2π)22r

∫ ∞

−∞
dk
(

eik(r−ct) − eik(r+ct)
)

=
c

4πr
(δ(r− ct)− δ(r + ct))

=
c

4πr
δ(r− ct).

We discard the second delta function above, since its argument r + ct > 0 if t > 0, and thus the δ function
is always zero.

If we now reinstate t′ and r′ using Galilean invariance, we find that

G(r, t; r′, t) =
c

4π|r − r′| δ
(
|r − r′| − c(t− t′)

)
. (4.20)

For reasons that will become clear below, this is called the retarded Green function. It vanishes every-
where except on the backward light cone, |r − r′| = c(t− t′), see Fig. 4.3.

Two special cases can be obtained simply:

1. For a static charge distribution (and no current), we find

Φ(x) =
∫

d3r′dt′
c

4π|r − r′| δ
(
|r − r′| − c(t− t′)

) ρ(r′)
ε0

=
∫

d3r′
1

4πε0|r − r′|
ρ(r′)

ε0
,

using ∫
dt′δ

(
|r − r′| − c(t− t′)

)
=

1
c

.

2. If ρ(r′, t′) describes a single moving charged particle, which is at a position s(t′) at time t′, we use
ρ = qδ(r′ − s(t′)) and we find the Liénard-Wiechert potential,

Φ(x, t) =
∫

d3r′dt′
c

4π|r − r′| δ
(
|r − r′| − c(t− t′)

)
qδ(r′ − s(t′))/ε0

= q/ε0

∫
dt′

c
4π|r − s(t′)| δ

(
|r − s(t′)| − c(t− t′)

)
.
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Figure 4.3: The backward light cone starting from r, t

The δ function selects those points on the path followed by the charge that intersect the light-cone with
apex r, t at a time s(t′), t′.

4.3.2 Wave equations in (2 + 1) dimensions

Green functions for wave equations in (2+1) dimensions can be solved directly by the Fourier transform
method, or, if you know the result in (3+1) dimensions, they can also be obtained by “integrating out” the
extra dimensions:

G(2)(x− x′, y− y′, t− t′) =
∫

dz′ G(r, t; r′, t′) (4.21)

for t > t′.
This can be checked quite simply. From

�G(r, t; r′, t) = δ(r − r′)δ(t− t′).

We find that ∫
dz′ �G(r, t; r′, t′) =

∫
dz′ δ(r − r′)δ(t− t′).

If we now swap differentiation and integration, we get

�
∫

dz′ G(r, t; r′, t′) = δ(x− x′)δ(y− y′)δ(t− t′).

Since
∫

dz′ G(r, t; r′, t′) = G(2)(x− x′, y− y′, t− t′) is independent of z, we find that ∂2
zG(2) = 0, and thus

G(2) is indeed the Green function for the two-dimensional wave equation.
From equation (4.20) we find ∫

dz′
c

4π|r − r′| δ
(
|r − r′| − c(t− t′)

)
Integrate using the delta function, which is nonzero at z′± = z±

√
c2(t− t′)2 − (x− x′)2 − (y− y′)2, and

thus

δ
(
|r − r′| − c(t− t′)

)
=

|z− z′|√
c2(t− t′)2 − (x− x′)2 − (y− y′)2 ∑

α=±
δ(z′ − z′±) .
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Both poles give the same contribution, and the retarded Green function is thus

G(2)(x− x′, t− t′) =
c

2π

1
(c2(t− t′)2 − |x− x′|2)1/2 (4.22)

for t > t′ , where x is a 2-dimensional space vector x = (x, y). In contrast to the 3+1 case, this is non-
vanishing in the whole of the backward light-cone, not just on it!
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Chapter 5

Variational calculus

5.1 Functionals and stationary points

As will be illustrated below, we can generalise the concept of a function to that of a functional, a mapping
of a function onto a number. An example could be

I[y] =
∫ b

a
y(x)d x,

where we have also introduced a “square-brackets notation” to distinguish this from a function. In short,
a functional I[y] has a definite numerical value for each function x → y(x).
Example 5.1:

An example of a functional is

I[y] =
∫ π

0
y(x) dx.

Some illustrative values of the functional are

y(x) I[y]
sin x 2
cos x 0
x π2/2
x2 π3/3
...

...

5.2 Stationary points

For a function we speak of a stationary point when the function doesn’t change under a small
change, i.e., if we take x → x + δx, and thus f → f + δ f , the change in f , δ f = 0, to first
order in δx. This leads to the obvious relation d f

dx = 0.

As for functions, we are extremely interested in stationary points of functionals:

A functional has a stationary point for any function y such that a small change
y(x) → y(x) + ε(x) leads to no change in I[y] to first order in ε(x).

45
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A key difference with the stationary points of functions is that smallness of ε(x) only implies that
as a function it is everywhere (mathematician would say “uniformly”) close to zero, but can still vary
arbitrarily.

An important class of functionals is given by

I[y] =
∫ b

a
dx F(y(x), y′(x), x) , (5.1)

where a, b are fixed, and y is specified at the boundaries, i.e., the values of y(a) and y(b) are specified as
boundary conditions. Thus under a (small) change y(x) → y(x) + ε(x), the preservation of the boundary
conditions implies

ε(a) = ε(b) = 0. (5.2)

Now substitute and expand to first order in ε(x),

δI[y] = I[y + ε]− I[y]

=
∫ b

a
dx F(y(x) + ε(x), y′(x) + ε′(x), x)−

∫ b

a
dx F(y(x), y′(x), x)

=
∫ b

a
dx
(

∂F
∂y(x)

ε(x) +
∂F

∂y′(x)
ε′(x)

)
=
∫ b

a
dx
(

∂F
∂y(x)

ε(x)− d
dx

∂F
∂y′(x)

ε(x)
)

=
∫ b

a
dx ε(x)

[
∂F

∂y(x)
− d

dx
∂F

∂y′(x)

]
where we have integrated by parts to obtain the penultimate line, using the boundary conditions on ε.

Since ε(x) is allowed to vary arbitrarily, this is only zero if the quantity multiplying ε is zero at every
point x. For example, you can choose a set of ε’s that are all peaked around a particular value of x. We
thus see that the term proportional to ε vanishes at each point x, and we get the Euler-Lagrange equation

∂F
∂y(x)

− d
dx

∂F
∂y′(x)

= 0. (5.3)

Remarks

• we often don’t write the dependence on x, but it is implicitly assumed that you understand that this
is a “functional equation”.

• We use the functional derivative notation
δI[y]

δy

for the term in the functional I[y + δy] proportional to δy,

I[y + δy] = I[y] +
∫

dx δy(x)
δI[y]

δy
(x) + . . . .

• If the functional is not an integral, e.g.,

I[y] = y(0) ,

we can turn it into an integral by adding a delta function. In the case above,

I[y] =
∫

y(x)δ(x) dx.
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Figure 5.1: The distance between two points along a path connecting two fixed points

• The notations
δI[y]

δy
(x) and

δI[y]
δy(x)

are used interchangeably.

For a general functional, the equation

δI[y]
δy

= 0

is called the Euler-Lagrange equation.

Solutions to this equation define stationary points of the functional.

5.3 Special cases with examples: first integrals

Let us look at a few special cases for the functional I defined in (5.1).

5.3.1 Functional of first derivative only

We first consider the case F(y(x), y′(x), x) = F(y′(x), x), and thus independent of y. The Euler-Lagrange
equation,

d
dx

∂F
∂y′(x)

= 0,

has the simple solution
∂F

∂y′(x)
= constant. (5.4)

This equation is called the “first integral” of the problem.
Example 5.2:

Show that the shortest distance between any two fixed points (in 2D space, for simplicity) is
along a straight line.

Solution:

We parametrise the curve connecting the two points by (x, y(x)) (which assumes each value
x only occurs once, and we thus only look at a–sensible–subclass of paths). The endpoints
(a, y(a)) and (b, y(b)) are fixed. If we take a small step along the line, the distance travelled is

(ds)2 = (dx)2 + (dy)2 = (dx)2[1 + (dy/dx)2].
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Thus
ds = (1 + y′2)1/2dx.

The total path length is thus the functional

L[y] =
∫ b

a
(1 + y′2)1/2dx,

which is of the form investigated above. Thus

∂F
∂y′(x)

=
y′(x)

(1 + y′(x)2)1/2
= k.

It is not too hard to solve this equation, by squaring both sides,

y′2(x) = k2(1 + y′(x)2) ,

y′(x) =
k√

1− k2
= c ,

y(x) = cx + d

We can determine c and d from the boundary conditions

c =
y(b)− y(a)

b− a
,

d =
by(a)− ay(b)

b− a
.

5.3.2 No explicit dependence on x

If F(y, y′, x) = F(y, y′), independent of x, we proceed in a slightly different way. We combine the Euler-
Lagrange equation

∂F
∂y(x)

=
d

dx
∂F

∂y′(x)

with an explicit differentiation of F,

dF
dx

=
∂F

∂y(x)
y′(x) +

∂F
∂y′(x)

y′′(x),

to find

dF
dx

=
d

dx

(
∂F

∂y′(x)

)
y′(x) +

∂F
∂y′(x)

d
dx

y′(x)

=
d

dx

(
y′(x)

∂F
∂y′(x)

)
.

Combining left-hand and right-hand sides, we find

d
dx

(
F− y′

∂F
∂y′(x)

)
= 0.

We thus conclude that for F[y, y′] (i.e., no explicit x dependence in the functional) we have the first integral

F− y′
∂F

∂y′(x)
= constant . (5.5)
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Figure 5.2: Snell’s law

Example 5.3:

Fermat’s principle of geometrical optics states that light always travels between two points
along the path that takes least time, or equivalently which has shortest optical path length
(since time is pathlength divided by the speed of light). Show that this implies Snell’s law.

Solution:

Following notations as for the shortest path problem above, we find that the travel time of
light along an arbitrary path y(x) is

t[y] =
∫ ds

v

=
1
c

∫
n(x, y)ds

=
1
c

∫
n(y)

√
1 + y′2dx,

or in terms of the optical path

p[y] =
∫

n(y)
√

1 + y′2dx.

We have assumed that n(x, y) = n(y). Its correctness depends on both path and arrangement
of the problem.

We now use the result (5.5) from above, and find with F = n(y(x))
√

1 + y′2 that

constant = n(y)
√

1 + y′2 − y′
n(y)y′√
1 + y′2

= n(y)

 1 + y′2√
1 + y′2

− y′2√
1 + y′2


= n(y)

1√
1 + y′2

.

Thus

n(y) = const
√

1 + y′2 . (5.6)
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Now consider areas where n(y) is constant. The problem turns into the least distance problem
discussed above, and we find that in such an area the optical path becomes a straight line. We
now assume two such areas, with index of refraction n1 below the x axis, and n2 above, see
Fig. 5.2. As usual it is easy to see that y′(x) = tan φ, and from√

1 + y′2 =
√

1 + tan2 φ = sec φ = 1/ cos φ

we conclude from Eq. (5.6) that n cos φ = constant. Thus

n1 cos φ1 = n2 cos φ2 ,

and using cos φ = cos( π
2 − θ) = sin θ we get

n1 sin θ1 = n2 sin θ2,

i.e., we have proven Snell’s law.

Let’s look at one more related problem
Example 5.4:

The brachistochrone is the curve along with a particle slides the fastest between two points
under the influence of gravity; think of a bead moving along a metal wire. Given two fixed
endpoints, A = (0, 0) and a second point B, find the brachistichrone connecting these points.

Solution:

We find for the travel time

T =
∫ B

A
dt =

∫ B

A

dt
ds

ds =
∫ B

A

ds
v

,

which has to be a minimum. From energy conservation we get

1
2

mv2 = mgy, or v =
√

2gy,

and as before

ds =
√

1 + y′2dx .

Taking all of this together

T[y] =
∫ b

0

(
1 + y′2

2gy

)1/2

dx. (5.7)

We now drop the factor 2g from the denominator, and minimise

I[y] =
∫ b

0

(
1 + y′2

y

)1/2

dx.

Since F =
(

1+y′2

y

)1/2
has no explicit x dependence, we find

F− ∂F
∂y′

y′ = constant,
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Figure 5.3: x/y as a function of φ0.

i.e.,

const =
1 + y′2

y
− 1
√

y
y′√

1 + y′2y′

=
1 + y′2√
y(1 + y′2)

− y′2√
y(1 + y′2)

=
1√

y(1 + y′2)
.

Substituting a convenient value for the constant, we find

y(1 + y′2) = 2R,

which is the equation for a cycloid. To solve this, we write y′ = cot(φ/2), which now leads to

1 + y′2 = 1 + cos2(φ/2)/ sin2(φ/2) = 1/ sin2(φ/2),

and
y(φ) = 2R/(1 + y′2) = 2R sin2(φ/2) = R(1− cos φ). (5.8)

That would be fine if we knew also x(φ), so we can represent the curve by a parametric plot!
We have from (5.8)

dx
dφ

=
1

dy/dx
dy
dφ

= tan(φ/2)2R sin φ/2 cos φ/2 = 2R sin2 φ/2 = y.

Thus using Eq. (5.8) we get x = R(φ− sin φ) + C. Imposing the condition that the curve runs
through (0, 0), we find

x = R(φ− sin φ), y = R(1− cos φ).

We determine R and an angle φ0 from the conditions

(R(φ0 − sin φ0), R(1− cos φ0)) = (b, y(b)).

This has multiple solutions. In order to cover all points with positive x/y once, we need to
require 0 < φ < 2π, see Fig. 5.3.

Once we have fixed the range of φ, we can then solve for the brachystochrone, see Fig. 5.4 for
a few examples.
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Figure 5.4: A few brachystochrone curves for y f = 1.

So what is the value of the travel time? Substituting the solution into Eq. (5.7) we get

T =
∫ φ0

0

(
2R

2gy2

)1/2
ydφ

= φ0

√
R
g

.

5.4 Generalisations

5.4.1 Variable end points

So far we have considered

δI[y] = δ
∫ b

a
F(y, y′, x)dx = 0,

where the value of y(a) and y(b) were fixed. What happens if we allow the value at the endpoints to vary
as well?

5.4.2 One endpoint free

Let’s look at the simplest case: we once again want to find a function y such that

δI[y] = δ
∫ b

a
dx F(y, y′, x) = 0 (5.9)

where a, b, y(a) are fixed but we allow y(b) to vary.
In the integration by parts we can now no longer show that the boundary terms are zero, so we need

to work through the algebra again to see what happens. As before we make the substitution y(x) →
y(x) + ε(x) and expand to first order in ε with ε(a) = 0, but without a boundary condition for ε(b).
Using the techniques employed before, we find

δI =
[

ε(x)
∂F

∂y′(x)

]b

a
+
∫ b

a

[
∂F

∂y(x)
− d

dx

(
∂F

∂y′(x)

)]
ε(x) dx

= ε(b)
∂F

∂y′(x)

∣∣∣∣
x=b

+
∫ b

a

[
∂F

∂y(x)
− d

dx

(
∂F

∂y′(x)

)]
ε(x) dx,

where we have applied the boundary condition ε(a) = 0 in the last line. From the integral we still get the
the Euler-Lagrange equation,

∂F
∂y(x)

− d
dx

∂F
∂y′(x)

= 0,

but from the boundary term we get an additional equation,

∂F
∂y′

∣∣∣∣
x=b

= 0. (5.10)
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Example 5.5:

What is the shortest time for a particle to slide along a frictionless wire under the influence of
gravity from (x, y) = (0, 0) to x = x f for arbitrary y f ? (A variation on the brachistochrone.)

Solution:

From the brachistochrone problem we know that for

F(y, y′) =
(

1 + y′2
)1/2

y−1/2 ,

and that the Euler-Lagrange equation has the first integral

[y(1 + y′2)]1/2 = k .

The solution is still a cycloid,

x = R(φ− sin φ), y = R(1− cos φ),

which indeed passes through (0, 0) for φ = 0. Now for an extremum of the travel time, we
have the additional condition

∂F
∂y′

∣∣∣∣
x=x f

=
y′√

y(1 + y′2)
= 0.

We conclude y′(x f ) = 0, i.e., the cycloid is horizontal at x = x f . This occurs when

dy
dφ

= R sin(φ) = 0,

i.e., when φ = π. In that case we can find R from

x(φ = π) = Rπ = x f ,

and thus R = x f /π. Finally, y(x f ) = 2x f /π.

5.4.3 More than one function: Hamilton’s principle

We often encounter functionals of several functions y1, y2, . . . , yn of the form

I[{yi}] =
∫ b

a
dx F({yi(x), y′i(x)}, x), i = 1, 2, . . . , N. (5.11)

We now look for stationary points with respect to all yi, again keeping the functions at the endpoints fixed.
Generalising the usual technique for partial derivatives to functional ones, i.e., varying each function in
turn keeping all others fixed, we find

δI
δyi

= 0.

The usual integration-by-parts technique thus leads to N Euler-Lagrange equations,

∂F
∂yi(x)

− d
dx

∂F
∂y′i(x)

= 0, i = 1, 2, . . . , N. (5.12)
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Hamilton’s principle of least action

An important application in classical dynamics is Hamilton’s principle. Suppose we have a dynamical
system defined by N “generalised coordinates” qi(t), i = 1, 2, . . . , N, which fix all spacial positions of a
mechanical system at time t.

In standard Newtonian mechanics, where the energy is made up of a kinetic energy T and potential
energy V, we can now define an object called the Lagrangian by

L(qi, q̇i, t) = T(qi, q̇i)−V(qi, t).

The left hand-side of this equation is more fundamental than the right-hand one: We can
define Lagrangians for many problems, also those where we cannot easily make a separation
E = T + V.

Hamilton’s principle states that the system evolves between the configuration qi at time t1 to
a new configuration q′i at time t2 along a path such that the action S, the integral of L over

time, is minimal,

δS = δ
∫ t2

t1

L(qi, q̇i, t)dt = 0.

Using the Euler-Lagrange equation for the functional S[q, q̇], we find what is usually called Lagrange’s
equation of motion,

∂L
∂qi(t)

− d
dt

(
∂L

∂q̇i(t)

)
= 0. (5.13)

Example 5.6:

Derive Newton’s equation of motion for a particle of mass m attached to a spring from the
Lagrangian.

Solution:

L = T −V =
1
2

mẋ2 − 1
2 kx2 .

From (5.13) we find that

−kx− d
dt

(mẋ) = 0 ,

or

mẍ = −kx = −dV(x)
dx

.

One interesting consequence of our previous discussion of first integrals, is that they carry over to this
problem, and will give us conservation laws.

First of all, let us look what happens if we are looking at an isolated self-interacting system. This
means there are no external forces, and thus there can be no explicit time dependence of the Lagrangian,

L = L(qi, q̇i).

From experience we expect the total energy to be conserved. Can we verify that?
We know from the case of a functional of a single function,

I[y] =
∫

dx F(y, y′),
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that the first integral is

F− y′(x)
∂F

∂y′(x)
= constant.

The obvious generalisation for this case is

L−∑
i

q̇i
∂L

∂q̇i(t)
= constant = −E.

The identification with −E comes from looking at standard examples where the kinetic en-
ergy is always quadratic in q̇, in which case−∑i q̇i

∂T
∂q̇i(t) = −2T. Since in this case L = T−V,

we find that T −V − 2T = −(T + V) = −E.

Secondly, what happens if a coordinate is missing from L? In that case we get the first integral

∂L
∂q̇i(t)

= constant.

If we identify ∂L
∂q̇i(t) as the “canonical momentum” pi, we find that pi is a constant of motion, i.e., doesn’t

change.
The form of mechanics based on Lagrangians is more amenable to generalisation than the use of the

Hamiltonian, but it is not as easy to turn it into quantum mechanics. To show its power let us look at a
relativistic charge in fixed external E.M. fields, where the Lagrangian takes the (at first sight surprising)
form

L(x, ẋ, t) = −mc2
(

1− ẋ2/c2
)1/2

+ qA · ẋ− qΦ .

The first term can be understood by Taylor expansion for small velocities, where we must find −mc2 +
mẋ2/2, which is the right mixture of a potential (−mc2) and kinetic term.

The equations of motion take the form (remembering that A and Φ depend on x)

d
dt

mẋi

(1− ẋ2/c2)1/2 = q(∇i A) · ẋq− q∂t Ai − q∇iΦ.

With a standard definition of B = ∇× A and E = −∇Φ− ∂t A, we have

d
dt

p = q(v× B + E).

5.4.4 More dimensions: field equations

For dynamics in more dimensions x = x1, x2, . . . , xN , we should look at the generalisation of the action,

S [φ] =
∫

Ω
dτ L(φ(x), ∂µφ(x), x) (5.14)

where dτ = dx1dx2 . . . dxN is an infinitesimal volume in N-dimensional space and

φ,µ ≡ ∂µφ =
∂φ

∂xµ , µ = 1, 2, . . . , N. (5.15)

As usual, we now look for a minimum of the action. We make the change φ(x) → φ(x) + ε(x), keeping
the variations small, but zero on the surface of the region Ω (mathematically, that is sometimes written as
ε(x)|∂Ω = 0), see Fig. 5.5.
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Figure 5.5: The volume Ω and the surface area dS.

Looking for variations to first order in ε, we get

δS =
∫

Ω

(
ε(x)

∂L
∂φ(x)

+
N

∑
n=1

ε,µ
∂L

∂φ,µ(x)

)
dτ

=
∫

Ω

[
ε(x)

∂L
∂φ(x)

+
N

∑
n=1

∂µ

(
ε

∂L
∂φ,µ(x)

)
− ε

N

∑
n=1

∂µ

(
∂L

∂φ,µ(x)

)]
dτ

=
∫

Ω
ε

[
∂L

∂φ(x)
−

N

∑
µ=1

∂µ

(
∂L

∂φ,µ(x)

)]
dτ +

N

∑
µ=1

∫
∂Ω

ε
∂L

∂φ,µ(x)
dSµ .

(dSµ = ∏i 6=µ dxi = dτ/dxµ). The surface integral vanishes due to the boundary conditions, and requiring
δS = 0, we find the Euler-Lagrange equation,

∂L
∂φ

−∑
µ

∂µ
∂L
∂φµ

= 0, (5.16)

or, more explicitly:
∂L

∂φ(x)
−∑

µ

∂

∂xµ

∂L
∂∂µφ(x)

= 0. (5.17)

The slightly abstract form discussed above can be illustrated for the case of a 1D continuum field (e.g.,
a displacement), which depends on both position x and time t. With µ = 1 for x and µ = 2 for t the E-L
equations become

∂L
∂φ

− ∂

∂t
∂L
∂φ̇

− ∂

∂x
∂L
∂φ′

= 0

with

φ̇ =
∂φ

∂t
, φ′ =

∂φ

∂x
.

For that case the action takes the form

S =
∫

dt
∫

dxL(φ, φ′, φ̇, x, t).

Clearly this suggest that
∫

dxL plays the role of Lagrangian, and we call L the Lagrange density.
Example 5.7:

Describe the motion of an elastic stretched string, with fixed endpoints, assuming small defor-
mation, see Fig. 5.6.

Solution:
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Figure 5.6: The stretched string

As per usual, we parametrise the position by x, y(x, t), and assume y to be small. In that case
we have

dl =
√

1 + y′2dx ≈
(

1 +
1
2

y′2
)

dx.

The mass density of the string remains almost constant, and we find that the contribution to
the kinetic energy between x and x + dx is

dK =
1
2

mv2 =
1
2

ρẏ2dx .

The potential energy in that part of the string is the tension times the stretching,

dV = T(dl − dx) = T
1
2

y′2dx.

We conclude

L =
∫

(dK − dV) =
∫ (1

2
ρẏ2 − T

1
2

y′2
)

dx =
∫

dxL,

and

S =
∫ ∫ (1

2
ρẏ2 − 1

2
Ty′2

)
dx dt.

Using the previous results with φ → y, we get

0 =
∂L
∂y

− ∂

∂t
∂L
∂ẏ

− ∂

∂x
∂L
∂y′

= − ∂

∂t
ρẏ− ∂

∂x
(−Ty′)

= −ρÿ + Ty′′.

We thus get the wave equation
1
c2 ÿ = y′′,

with c2 = T/ρ.

Example 5.8:

Find the equations of motion for a freely moving elastic band of length 2πl. For simplicity,
assume a two-dimensional world, small stretching, and uniform density.
Discuss the solution to the equations of motion for an almost circular band.

Solution:
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Specify the points on the band as (x(φ), y(φ)), with periodic boundary conditions x(0) =

x(2π), y(0) = y(2π). The local length is ds =
√

x′2 + y′2 dφ. This needs to be compared to
the unstretched band, where ds = ldφ (but the band does not have to be circular!). For small
stretching, the energy for compression or stretching must be given by a form Hook’s law, i.e,
be proportional to the local stretching or compression squared,

dV = κ 1
2

(√
x′2 + y′2 − l

)2
dφ.

At the same time the kinetic energy is given by

dT = ρl 1
2 (ẋ2 + ẏ2)dφ.

Thus,

S =
∫

dt
∫ 2π

0
dφ

[
ρl 1

2 (ẋ2 + ẏ2)− κ 1
2

(√
x′2 + y′2 − l

)2
]

.

The EoM are found form a combination of Hamilton’s principle and the field problems dis-
cussed above,

−ρlẍ + κ∂φ

 x′√
x′2 + y′2

(
√

x′2 + y′2 − l)

 = 0 ,

−ρlÿ + κ∂φ

 y′√
x′2 + y′2

(
√

x′2 + y′2 − l)

 = 0 .

If the band is almost circular, we write (x(φ), y(φ)) = (l + λ(φ))(cos(φ + ψ(φ)), sin(φ +
ψ(φ))), and expand to first order in λ and ψ,

−ρl(cos(φ)λ̈− l sin(φ)ψ̈) = κ
(
− cos(φ)(λ + lψ′)− sin(φ)(λ′ + lψ′′)

)
−ρl(sin(φ)λ̈ + l cos(φ)ψ̈) = κ

(
− sin(φ)(λ + lψ′) + cos(φ)(λ′ + lψ′′)

)
This can be rewritten as

ρlλ̈ = −κ(λ + l∂φψ) ,

ρl2ψ̈ = κ(∂φλ + l∂φ2 ψ) .

This shows the conservation law ∂φλ̈ = −lψ̈.

Thus, it is easy to solve the case when λ is independent of φ and ψ = 0. Then

λ̈ = − κ

ρl
λ ,

which describes simple harmonic motion.

Example 5.9:

Show that the Lagrangian density (in 3+1 dimensions)

L =
1
2

[
(∂tφ)2 − (∇φ)2 −m2φ2

]
leads to the Klein-Gordon equation.
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Solution:

First note that the first term is the kinetic energy density, so the next two terms can be inter-
preted as minus the potential energy. There is some amiguity to this, since we have

S =
∫

dt
∫

d3xL =
∫

d4xL,

the action for a relativistic (covariant) field theory.

From the Euler-Lagrange equations we find that

−m2φ− ∂t∂tφ + ∂x∂xφ = 0,

leading to the Klein-Gordon equation, a slightly modified form of the wave-equation, describ-
ing a field with modes with mass m–i.e., a classical description of massive bosons.

5.4.5 Higher derivatives

Occasionally we encounter problems where the functional contains higher than first order derivatives;
much what we have said above is of course rather specific to the case of first order derivatives only!

5.5 Constrained variational problems

It is quite common that we have subsidiary conditions on a minimisation problem, i.e., we want to know
the minimum provided that certain other conditions hold. Let us first analyse this problem for ordinary
functions first

5.5.1 Lagrange’s undetermined multipliers

To find the stationary points of a function f (x) subject to constraints gk(x) = 0, (k = 1, 2, . . .), we can
solve an extended problem and find the unconstrained stationary points of the extended functional

F(x, λ1, λ2, . . .) = f (x)− λ1g1(x)− λ2g2(x)− . . . , (5.18)

w.r.t to x and λi.
Let’s look at a somewhat explicit example. We wish to minimise a function f (x, y) subject to a single

constraint g(x, y) = 0. We thus need to minimise the extended function

F(x, y, λ) = f (x, y)− λg(x, y),

and find

∂F
∂x

=
∂ f
∂x

− λ
∂g
∂x

= 0 ,

∂F
∂y

=
∂ f
∂y
− λ

∂g
∂y

= 0 ,

∂F
∂λ

= g(x, y) = 0.

The last line clearly states that the constraint must be implemented. The new terms (proportional to λ) in
the first two lines say that a constrained minimum is reached when the gradient of the function is parallel
to the gradient of the constraint. This says that there is no change in the function, unless we violate our
constraint condition–clearly a sensible definition of a stationary point.
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Example 5.10:

Find stationary points of f (x, y) under the subsidiary condition x2 + y2 = 1.

Solution:

Look for stationary points of
F = xy− λ(x2 + y2 − 1),

which are given by the solution(s) of

∂F
∂x

= y− 2λx = 0,

∂F
∂y

= x− 2λy = 0,

∂F
∂λ

= x2 + y2 − 1 = 0.

The first two conditions give x2 = y2, and from the constraint we find (x, y) = (±1/
√

2,±1/
√

2).
The values of λ associated with this are λ = ±1/2.

5.5.2 Generalisation to functionals

We look for stationary points of I[y] subject to a constraint J[y] = C, (can also be multiple constraints)
where I, J are given functionals of y(x) and C is a given constant.

To do this: we solve for the stationary points of an extended funtional,

K[y, λ] = I[y]− λ(J[y]− C) , (5.19)

with respect to variations in the function y(x) and λ. We then have

δK = δI − λ δJ − dλ (J[y]− C),

which can be dealt with as an unconstrained variational problem. Its solution can be slightly tricky; one
way is to solve the problem

δK = δI − λδJ

for fixed λ to find y(x) as a function of λ, and then use the constraint J[y] = C to find the allowed value(s)
of λ, and thus the solution.
Example 5.11:

Find a closed curve of fixed length L = 2πl which encloses the maximum area A. (The isoperi-
metric problem, see Fig. 5.7.)

Solution:

Describe the curve in polar coordinates by (θ, r(θ)), assuming the origin lies within the curve.
We then find that

A[r] =
∫ 2π

0

1
2

r2dθ,

L[r] =
∫

dl =
∫ 2π

0
(r2dθ2 + dr2)

=
∫ 2π

0

√
r2 + r′2dθ = 2πl .
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Figure 5.7: The isoperimetric problem.

We now need to find stationary points of

I[r, λ] = A[r]− λ(L[r]− 2πl) =
∫ 2π

0
(r2/2− λ

√
r2 + r′2)dθ + 2πl.

Minimising with respect to r(θ), we find a problem where there is no explicit dependence of
the function we usually call “F” on θ, and thus

F− r′
∂F
∂r′

= K.

Explicitly,

K =
1
2

r2 − λ

√
r2 + r′2 − r′

(
−λ(−1/2)2r′/

√
r2 + r′2

)
=

1
2

r2 − λ
r2√

r2 + r′2
, (5.20)

together with the constraint

L =
∫ 2π

0

√
r2 + r′2dθ = 2πl.

Unfortunately, this equation is not easy to solve in general, but we can guess one solution:
Look at λ = 0 when we find r = l, K = l2/2. This describes a circle through the origin. By
translational invariance we see any other circle also satisfies this condition.
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Figure 5.8: The catenary

Example 5.12:

What is the equilibrium curve for a flexible “chain” of length l and density ρ per unit length,
when we hang it between two points A and B. (The catenary, see Fig. 5.8.)

Solution:

We need to minimise the gravitational potential energy

E[y] =
∫ B

a
ρdl y =

∫ b

a
ρgy

√
1 + y′2dx,

subject to the constraint of constant length L[y] = l, with

L[y] =
∫ B

A
dl =

∫ b

a

√
1 + y′2dx.

Thus we need to find stationary points of G[y] = E[y]− λ(L[y]− l).

As usual the variation with respect to y is simple, since the integrand

F(y, y′, λ) = (ρgy− λ)
√

1 + y′2

has no explicit dependence on x we can use the first integral,

F− y′
∂F
∂y′

= C,

or explicitly,

(ρgy− λ)
√

1 + y′2 − y′(ρgy− λ)
y′√

1 + y′2
=

ρgy− λ√
1 + y′2

= C.

This can be solved by making a shift on y,

u = y− λ/(gρ), α = C/(gρ).
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The new function u satisfies

u = α

√
1 + u′2 =⇒

u2/α2 = 1 + u′2 =⇒

u′2 = (u2 − α2)/α2 =⇒
αu′√

u2 − α2
= 1 =⇒∫

αdu√
u2 − α2

=
∫

dx .

Now use u = α cosh w, du = α sinh w dw to find∫
α2 sinh w dw

α sinh w
= x =⇒

αw = x− x0 =⇒
u = α cosh((x− x0)/α) =⇒
y = α cosh((x− x0)/α) + λ/(ρg) .

The three constants α, x0 and λ are determined by the condition that line goes through A and
B and has length

l =
∫ b

a

(
1 + α2 sinh2(x− x0)/α

)1/2
dx.

The point x0 is where the curve gets closest to the ground. If y(a) = y(b), x0 = (a + b)/2 by
symmetry.

A good demonstration can be found on ”Catenary: The Hanging Chain” on The Wolfram
Demonstrations Project.

5.5.3 Eigenvalue problems

Consider the eigenvalue equation for the function u(x)

Lu = λρu , (5.21)

where L is an Hermitian operator, ρ(x) is a positive, real weight function. We now look for the stationary
points of

I[u] =
∫

dτ u∗Lu (5.22)

subject to the normalisation constraint ∫
dτ ρu∗u = 1. (5.23)

We first look for an unconstrained stationary point of

Jλ[u] =
∫

dτ u∗Lu− λ

(∫
dτ ρu∗u− 1

)
,

and vary λ to obtain a solution that satisfies the constraint. We get

δJ =
∫

dτ (u∗Lδu + δu∗Lu)− λ
∫

dτρ (u∗δu + (δu∗)u)

=
∫

dτ (Lu− λρu)∗ δu +
∫

dτδu∗ (Lu− λρu) ,

http://demonstrations.wolfram.com/CatenaryTheHangingChain/
http://demonstrations.wolfram.com/CatenaryTheHangingChain/
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where we have used hermiticity of the operator L.
A key difference with the previous examples is that we have a complex function u, and any variation

thus falls into two parts,

δu = (<δu) + i(=δu),
δu∗ = (<δu)− i(=δu).

The real and imaginary parts are independent small functions, i.e., we can vary those independently.
In the same way we can conclude that the alternative orthogonal combination of these two variations
provided by δu and δu∗ vary independently, so we can select either of the two terms above, since they
must both be zero independently. The function multiplying δu∗ must thus satisfy

Lu− λρu = 0,

which shows u is an eigenfunction of L. We conclude that the stationary points are the eigenfunctions
u = u0, u1, . . . and the corresponding values of λ are the eigenvalues λ0, λ1, . . ..

Now suppose that there is a minimum eigenvalue λ0. This implies that for a normalised u, I[u] ≥ λ0.
We show below how we can use that to our benefit.

5.5.4 The Rayleigh-Ritz method

Suppose the function u0 gives the minimum of

I[u] =
∫

u∗Lu dτ,

subject to the constraint ∫
dτρ∗u∗u = 1.

Now suppose v0 gives the unconstrained minimum of

K[v] =
∫

dτv∗Lv∫
dτv∗ρv

. (5.24)

Theorem 5.1. The unconstrained minimum of K[v] and the constrained minimum of I[u] with the normalisation
constraint are identical.

Proof.

K[u0] =
∫

dτu0
∗Lu0∫

dτu∗0ρu0
= I[u0] ≥ K[v0].

(The last inequality holds if v0 is the minimum of K). Now find a similar relation for I. Define N =∫
dτv∗0ρv0 and w0 = v0/

√
N, then

I[w0] =
∫

w∗
0 Lw0dτ =

1
N

∫
v∗0 Lv0dτ = K[v0] ≥ I[u0].

Thus K[v0] = I[u0], and unless there are degenerate minima, w0 = u0.

This technique is very commonly used in quantum mechanics, where we then replace the functional
dependence with a parametrised dependence by choosing a set of wave functions depending on set of
parameters. In this case L = H, ρ = 1 and u = ψ.
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Figure 5.9: The parameter α and the energy E as a function of anharmonicity λ.

Example 5.13:

Find an approximation to the ground state of the quartic anharmonic oscillator

H = −1
2

d2

dx2 +
1
2

x2 + λ/2x4,

of the form ψ(x) = exp(−αx2/2).

Solution:

The normalisation integral is ∫ ∞

−∞
exp(−αx2)dx =

√
π/α.

By differentiating both sides w.r.t. α, we get two more useful integrals,∫ ∞

−∞
x2 exp(−αx2)dx =

1
2α

√
π/α.

∫ ∞

−∞
x4 exp(−αx2)dx =

3
4α2

√
π/α.

Thus the expectation value of the Hamiltonian requires the derivative

d2

dx2 exp(−αx2) = (x2α2 − α) exp(−αx2).

Thus the denominator of the variational functional becomes

∫ ∞

−∞
(−x2α2 + α + x2 + λx4)/2 exp(−αx2)dx =

√
π/α

(
−α/2 + α + 1/(2α) + 3λ/(4α2)

)
/2.

And thus
K(α) =

1
4

(
α + 1/α + 3λ/(2α2)

)
.

Minimising w.r.t. α, we find
1− 1/α2 − 3λ/α3 = 0.

This equation can be solved in closed form, but is rather complicated. We find that α increases
with λ, see Fig. 5.9.



66 CHAPTER 5. VARIATIONAL CALCULUS



Appendix A

Contour Integration

A.1 The Basics

The key word linked to contour integration is “analyticity” or the absense thereof:

A function is called analytic in a region R in the complex plane iff all the derivatives of the
function (1st, 2nd, ....) exist for every point inside R.

This means that the Taylor series

f (z) =
∞

∑
n=0

f (n)(c)
(z− c)n

n!
(A.1)

exists for every point c inside R.
In most cases we are actually interested in functions that are not analytic; if this only happens at isolated
points (i.e., we don’t consider a ”line of singularities”, usually called a ”cut” or ”branch-cut”) we can still
expand the function in a Laurent series

f (z) =
∞

∑
n=−∞

f (n)(c)
(z− c)n

n!
(A.2)

How we obtain the coefficients f (n)(c) from the function is closely linked to the problem of contour
integration.

A.2 Contour Integration

Let us look at the effects of integrating the powers of z along a line in the complex plane (note that
we implicitely assume that the answer is independent of the position of the line, and only depends on
beginning and end!) ∫ z1

z0

zn dz, n ∈ Z. (A.3)

We know how to integrate powers, so apart from the case n = −1, we get

∫ z1

z0

zn dz =
[

1
n + 1

zn+1
]z1

z0

, n 6= −1, (A.4)∫ z1

z0

z−1 dz = [log z]z1
z0

, n = −1. (A.5)

67
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Figure A.1: Two contours: The blue one does not include the origin, the orange one does. The numbers on
the left plot show the phase of the relevant complex numbers. These are also graphed in the right panel.

So the first of these integrals is indepdent of the path between begin and end. It thus goes to zero as
we look at a closed path, but the second integral actually does depend on the path of integration:

Use z = reiφ; log(z) = log(r) + iφ. (A.6)

We have two options: the contour (the technical word for the closed path) either encloses the origin
where the singularity resides or not, see Fig. A.1.

As we move the around the curve, you notice for the blue curve that the phase (the number plotted
on the line connecting to the point for which we calculate the phase) gently oscillates up and down, and
thus the answer of the contour integral is zero; for the orange curve we see a jump at the negative x-axis.
This is due to a convention; in principle we can put this jump along any half-line in the complex plane
ending at the origin.
If we move the value at the right of the jump down by 2π (making the function continuous) we realise
that the begin and endpoint differ in phase by 2π. Thus for any contour enclosing the origin the phase
changes by 2π, and thus we expect that ∮

z−1dz = ±2πi (A.7)

for a contour enclosing the origin. The sign is positive if we integrate around in the positive sense (anti-
clockwise), and negative if we do the integral along a contour that encircles the origin in a clockwise
fashion.

If a function f (z) behaves like 1
z−c near the point c, we say that the function has a pole at

z = c.

A.3 Residues

We are now ready to make the general statement:
If a function f (z) has a term R

z−c in its Laurent series around the point c (i.e., it is not analytic in a region
around c, but it has an “isolated singularity” at c), then for any contour that encloses this and only this
pole ∮

f (z)dz = ±2πiR (A.8)

Here R is called the residue of f at c, and the sign depends on the orientation of the contour around c.
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If multiple singularities are enclosed, we find that (all residues contribute with the same sign, since
the contour must enclose them with the same orientation!)∮

f (z)dz = ±2πi ∑
k

Rk (A.9)

We can find the residue by expanding f (z) around c; it is often more useful (quicker) to look at the limit

lim
z→c

(z− c) f (z) = R. (A.10)

This works if there are no higher order singularities, i.e. no terms b−2/(z− c)2, etc. in the Laurent series.

A.4 Example 1: Simplest case

Contour integration is most commonly used to calculate integrals along the real axis, by turning them
into complex integrals.

Calculate the integral ∫ ∞

−∞

1
1 + x2 dx (A.11)

We actually know this one: it is [arctan(x)]∞−∞ = π. This is the simplest example of an integral doable by
contour integration. Rewrite as a complex integral∫ ∞

−∞

1
1 + z2 dz

As |z| → ∞, the integral over the half circle z = Reiφ (R fixed) gives (dz = d
(

Reiφ) = Reiφidφ)∫ R

−R

1
1 + z2 dz = R

∫ π

0

1
1 + R2e2iφ deiφ ∝

1
R
→ 0. (A.12)

This means we can close of the integral by adding a contour from ∞ to −∞ along a half circle. We easily
see that z2 + 1 = (z + i)(z− i), and thus has poles in the upper and lower half plane. Only the one in the
upper half plane is contained inside the contour, which goes around in positive sense.

The residue is − i
2 and thus∫ ∞

−∞

1
1 + x2 dx =

∫ ∞

−∞

1
1 + z2 dz =

∮ 1
1 + z2 dz = − i

2
2πi = π (A.13)

as we know should be the case.
Note that in order to work, the ratio of denomiator over numerator should be at least 1

R2 for large
radius.

A.5 Example 2: Complex exponentials

The most common problem is with complex exponentials (or sines and cosines which can be written as
such).

Calculate the integral (which falls slowly for large x!)∫ ∞

−∞

eikx

i− x
dx (A.14)

We shall analyse this for k > 0.
If we substitute x = z = Reiφ, we find
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The problem can be seen on substitution of z = Reiφ, for R fixed (as a bove)

eikx

i− x
=

e−kR sin(φ)(cos(kR cos(φ)) + i sin(kR cos(φ)))
−R cos(φ)− iR sin(φ) + i

For sin(φ) > 0 the integrand goes to zero very quickly with R, but for φ=0 we enter a grey territory, where
the integrand decays like 1/R. If we move the original integral up by just a little bit (ε) we are OK, since
φ doesn’t become zero. Thus

∫ ∞

−∞

eikx

i− x
dx =

∫ ∞+iε

−∞+iε

eikz

i− z
dz =

∮ eikz

i− z
dz (A.15)

The residue is easily seen to be R = −e−k, and thus

∫ ∞

−∞

eikx

i− x
dx =

∫ ∞+iε

−∞+iε

eikz

i− z
dz =

∮ eikz

i− z
dz = 2πi

(
−e−k

)
= −2πi e−k (k > 0) (A.16)

In the same way we can show that for k < 0 we must close the contour in the lower plane (since k sin(φ)
must be negative)

∫ ∞

−∞

eikx

i− x
dx =

∫ ∞−iε

−∞−iε

eikz

i− z
dz =

∮ eikz

i− z
dz = −2πi(0) = 0 (k < 0) (A.17)

since no pole is enclosed inside the contour.

A.6 Final case: poles on the real axis

The techniques shown above fail if a pole occurs on the real axis, since we don’t know what side of the
contour it lies! The technique to deal with that is usually based on physics: Determine whether there are
physical conditions that must be satisfied on the quantity you wish to evaluate. Decide whether these
imply that a pole should contribute (which means we need to move the pole just inside the contour) or
whether it should not contribute (move pole just outside the contour). There are even cases where the
logical choice is to asign half on the inside and half on the outside. Clearly, the physical background
decides which choice to make.
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